• Title/Summary/Keyword: 충전율

Search Result 435, Processing Time 0.029 seconds

A Study on Real Time Control of Resin Transfer Molding (RTM 공정의 실시간 제어에 관한 연구)

  • Jeon Young Jae;Um Moon Kwang;Byun Joon Hyung;Lee Woo Il
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2005
  • In resin transfer molding(RTM), race-track effects and non-uniform fiber volume fraction may cause undesirable resin flow patterns and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to reduce these unfavorable effects is proposed. This control rule is accomplished by means of the permeability mapping and pressure regulation. Through numerical simulations, the validity of the proposed scheme is demonstrated.

An Experimental Study on the Heat Transport Characteristics of a Sodium Heat Pipe for a Solar Furnace (태양열 반응로용 나트륨 히트파이프의 열이송 특성에 관한 실험적 연구)

  • Boo, Joon-Hong;Park, Cheol-Min;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.178-181
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. The container material was made of stainless-steel 316, and the working fluid was sodium. Stainless-steel 316 mesh screen was inserted as a capillary structure. The working fluid fill charge ratio was approximately 64 $\sim$ 181% based on the pore space of the wick. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The evaporator part was 150 mm and the condenser 80 mm. The performance test of the heat pipe has been conducted in the furnace with up to 800 W. The variation of the average heat transfer coefficient was investigated as a function of heat flux and vapor temperature. As input thermal load increased, it was showed that difference of temperatures in evaporator and condenser decreased and that operating section and heat transfer characteristics at the heat pipe increased.

  • PDF

Development of Pulsating Heat Pipe type Waste Heat Recovery Ventilator Using an used Radiator for Vehicles (자동차용(自動車用) 폐(廢) 라디에이터를 이용한 히트 파이프형 환기배열(換氣排熱) 회수기(回收器)에 관한 연구(硏究))

  • Im, Yong-Bin;Choi, Sang-Joe;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.30-37
    • /
    • 2006
  • For keeping the indoor air quality, we develop the pulsating heat pipe(PHP) type heat recovery ventilator using an used radiator for vehicles. We compare the PHP type with existing model. There are some merits that are able to change the unit number according to heat load and show us the similar performance to existing models.

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

A Study on the Heat Transfer Characteristics of Loop Type Capillary Heat Pipe (루프형 세관 히트 파이프의 열전달특성에 관한 연구)

  • Yoon, Suck-Hun;Choi, Jae-Hyuck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, heat transfer characteristics of a loop type capillary heat pipe were experimentally investigated for the effect of several fill charge ratios of working fluid and heat loads. This type of heat pipe consists of a heating section, a cooling section and an adiabatic section. The heat pipe used has a 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling sections each have a length of 70mm. Experiments were performed to measure the temperature distributions and the pressure variation of the heat pipe. Heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients were calculated for various operating conditions of heat pipe and it was found that heat transfer characteristics of this type heat pipe were very excellent. As shown by this experimental study, this type of heat pipe operates by oscillatory flow caused by pressure and temperature oscillations.

The Magnetic Properties Anisotropic Sr-Ferrite Bonded Magnet Produced by Extrusion Molding (압출 성형에 의한 이방성 Sr-페라이트 본드 자석의 자기적 특성)

  • 박범식;김윤배;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.310-316
    • /
    • 1996
  • In this study magnetic properties of anisotropic ferrite bonded magnets produced by extrusion molding with a variety of magnetic field, extrusion mold temperature and extrusion rate were investigated. X-ray diffraction study showed the alignment of magnetic powder was decreased by molten flow in extrusion mold. When the temperature of extrusion mold was $20^{\circ}C$, the degree of alignment as much as 82% could be achieved under the applied magnetic field of 4 kOe. The bonded magnets having the remanence of 2.2 kG was able to fabricated by extrusion molding when the packing density of Sr-ferrite powder was 50 vol%.

  • PDF

Solid Propellants for Propulsion System Including a Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Won, Jongung;Park, Jungho;Park, Euiyong;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.65-71
    • /
    • 2018
  • There is no significant difference in the initial viscosity of a propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material with added yellow iron oxide is faster than that with the addition of red iron oxide. Specifically, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure with yellow iron oxide than with red iron oxide. The initial viscosity was lowest at 71% of the large particle to small particle ratio.

Dental Properties of Hydroxyapatite Filled Polymer Composite (수산화인회석이 충전된 고분자 복합체의 치과적 물성)

  • Kim Oh-Young;Seo Ki-Taek
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.