• 제목/요약/키워드: 충만

Search Result 6,045, Processing Time 0.038 seconds

An Extremely Early-Maturing, Plain Area Adaptable, Blast Resistant and High Grain Quality Rice Cultivar 'Joun' (평야지적응 극조생 내도열병 고품질 벼 신품종 '조운')

  • Won, Yong-Jae;Ryu, Hae-Young;Shin, Young-Seop;Hong, Ha-Cheol;Kim, Yeon-Gyu;Kim, Myeong-Ki;Jung, Kuk-Hyun;Jeon, Yong-Hee;Cho, Young-Chan;Ahn, Eok-Keun;Yoon, Kwang-Sup;Lee, Jeong-Heui;Kim, Jeong-Ju;Oh, Sea-Kwan;Oh, Myung-Kyu;Jeung, Ji-Ung;Chun, A-Reum;Park, Hyang-Mi;Roh, Jae-Hwan;Yoon, Young-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.313-317
    • /
    • 2010
  • There are the farmer's needs to develop early-maturing cultivar adaptable to mid-northern inland plain and alpine area. Furthermore, it is required to develop a rice variety to produce new rice before concentrated marketing dates, even in the years of early Chuseok. 'Joun' is a new extremely early-maturing japonica rice cultivar developed in 2009 from the cross of SR14880-173-3-3-2-2-2/Unbong20 at Cheolwon Substation, National Institute of Crop Science (NICS), Rural Development Administration (RDA). The heading date of 'Joun' is July 23 in mid-northern alpine area, which is 7 days earlier than that of Odaebyeo. It has about 61 cm in culm length with semi-erect plant type. Panicle has a few awns and its exertion is good. The number of spikelets per panicle is smaller than that of Odaebyeo and 1,000 grain-weight of brown rice is 21.2 g which is less than 26.3 g of Odaebyeo, but the complete grain ratio is higher. Milled kernels are translucent with non-glutinous endosperm and palatability of cooked rice is good. It shows strong resistance to cold treatment, lodging, premature heading, wilting and viviparous germination during ripening stage. This cultivar shows resistance to leaf blast disease but susceptible to bacterial blight, virus disease and insect pests. The milled rice yield performance of 'Joun' is about 5.18 MT/ha by ordinary culture in local adaptability test for three years. This cultivar may be highly adaptable to the mid-northern inland plain and alpine area, north-eastern coastal area and middle plain area.

A High Essential Amino Acid Properties Rice Cultivar 'Haiami' (필수아미노산 고함유 신품종 '하이아미')

  • Hong, Ha-Cheol;Kim, Yeon-Gyu;Yang, Chang-Ihn;Hwang, Hung-Goo;Lee, Jeom-Ho;Lee, Sang-Bok;Choi, Yong-Hwan;Kim, Hong-Yeol;Lee, Kyu-Seong;Yang, Sae-Jun;Kim, Myeong-Ki;Jeong, O-Young;Cho, Young-Chan;Jeon, Yong-Hee;Choi, Im-Soo;Jeong, Eung-Gi;Oh, Sea-Kwan;O, Myeong-Gyu;Yea, Jong-Du;Shin, Young-Seoup;Kim, Jeong-Ju
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.543-548
    • /
    • 2011
  • Haiami is a new Japonica rice variety developed from a cross between 'Jinmibyeo' TR treated with ethyl methane sulfonate (EMS) EMS and 5-methytryptophan, and 'Gyehwabyeo' in order to develop a new premium quality rice variety by a rice breeding team of National Institute of Crop Science, Rural Development Administration in 2008. This variety has about 138 days of growth duration from transplanting to harvesting in central plain area of Korea. The heading date of this vareity was on $15^{th}$, August. The 'Haiami' has good semi-elect plant type and resistant to lodging with strong culm. The number of panicles/hill of 'Haiami' is more than that of 'Hwaseongbyeo'. This variety shows slow leaf senescence and considerable tolerance to viviparous germination. It is susceptible to leaf blast, bacterial blight, and insect pests, but resistance to rice stripe virus. The milled rice of this variety exhibited translucent, clear non-glutinous endosperm and short grain shape. The essential amino acid properties of 'Haiami' have more than 31% that of 'Hwaseongbyeo' in polished rice. This variety has premium palatability of cooked rice. The yield performance of this rice cultivar was about 5.38 MT/ha in milled rice in local adaptability test for three years from 2006 to 2008. 'Haiami' is adaptable to central and southern plain areas of Korea.

A New Purple Sweetpotato Cultivar for Table Use 'Yeonjami' (식용 자색고구마 신품종 '연자미')

  • Lee, Joon-Seol;Ahn, Young-Sup;Chung, Mi-Nam;Kim, Hag-Sin;Jeong, Kwang-Ho;Bang, Jin-Ki;Song, Yeon-Sang;Shim, Hyeong-Kwon;Han, Seon-Kyeong;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.679-683
    • /
    • 2010
  • 'Yeonjami' is a new sweetpotato variety developed for table use by Bioenergy Crop Research Center, National Institute of Crop Science (NICS), RDA in 2008. This variety was selected from the cross between 'Ayamurasakki' and 'Poly Cross' in 2000, and seedling and line selections were practiced from 2001 to 2003. Preliminary and advanced yield trials were carried out from 2004 to 2005. The regional yield trials were conducted at six locations from 2006 to 2008. 'Yeonjami' has cordate leaf, green vine and petiole, long elliptic storage root, purple skin and light purple flesh color of storage root. The average yield of storage root was 25.9 ton/ha in the regional yield trials, which was 15% higher than that of 'Sinjami' variety. Number of storage roots over 50 gram per plant was 2.9, and the average weight of one storage root was 153 gram. This variety was partly-resistant to Fusarium wilt and nematode. In addition, steamed 'Yeonjami' has higher polyphenol contents as 139.6 mg/100 g and higher biological activities as, which may improve the bioactivity in human.

An Early-Maturing, Blast Resistant and High Quality Rice Cultivar "Pyeongwon" (벼 조생 단간 내도열병 고품질 신품종 "평원")

  • Ryu, Hae-Young;Jeon, Yong-Hee;Jung, Kuk-Hyun;Shin, Young-Seop;Hwang, Hung-Goo;Kim, Hong-Yeol;Kim, Myeong-Ki;Jung, O-Young;Won, Yong-Jae;Kim, Yeon-Gyu;Yang, Chang-In;Lee, Jeom-Ho;Lee, Jeong-Il;Lee, Jeong-Heui;Choi, Yoon-Hee;Yang, Sae-Jun;Ahn, Eok-Keun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • 'Pyeongwon' is a new japonica rice cultivar which is developed from a cross between Jinbu19 and Samjiyeon4 from North Korea by the rice breeding team of National Institute of Crop Science, RDA. Pyeongwon has about 107 days duration from seeding to heading in mid-northen plain, alpine, north-eastern coastal and southern alpine areas. It has about 67 cm culm length and tolerance to lodging. Pyeongwon has 13 tillers per hill and 82 spikelets per panicle. It showed tolerance to heading delay and spikelet sterility due to cold treatment similar to Odaebyeo. It also showed slow leaf senescence and moderate tolerance to viviparous germination during the ripening stage. Pyeongwon has resistance to blast disease but susceptible to stripe virus and brown planthopper. Milled rice of Pyeongwon has translucent kernels, relatively clear non-glutinous endosperm and medium short grain. It is characterized as a low gelatinization temperature and slightly lower amylose content (17.1%) variety compared to Odaebyeo (19.5%) and has good palatability of cooked rice. The milled rice yield performance of this cultivar was about 5.28 MT/ha by ordinary culture in local adaptability test for three years. This cultivar may be highly adaptable to the mid-northen plain, alpine, north-eastern coastal and southern alpine areas of Korea.

Analysis of Fish Ecology and Water Quality for Health Assessments of Geum - River Watershed (금강본류의 건강성 평가를 위한 어류생태 및 수질 특성분석)

  • Park, Yun-Jeong;Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.187-201
    • /
    • 2019
  • This study examined the physicochemical water quality and evaluated the ecological health in 14 sites of Geum River (upstream, mid-stream, and downstream) using the fish community distribution and guilds and eight multi-variable matrices of FAI (Fish Assessment Index) during June 2008-May 2009. The analysis of the water quality variables showed no significant variation in the upstream and mid-stream but a sharp variation due to the accumulation of organic matter from the point where the treated water of Gap and Miho streams flew. The analysis of physicochemical water properties showed that BOD, COD, TN, TP, Cond, and Chl-a tended to increase while DO decreased to cause eutrophication and algae development from the downstream where Miho and Gap stream merged. The analysis of fish community showed that the species richness index and species diversity index increased in the mid-stream area but decreased in the downstream area, indicating the stable ecosystem in the upper stream and the relatively unstable ecosystem in the downstream. The analysis of the species distribution showed that the dominant species were Zacco platypus that accounted for 20.9% of all fish species and Zacco koreanus that accounted for 13.1%. The analysis of the fish tolerance and feeding guild characteristics showed that the sensitive species, the insectivore species, and the aquatic species were dominant in the mid-stream point. On the other hand, contaminants from the sewage water treatment plant of Miho stream had a profound effect in the downstream to show the dominance of tolerant species, omnivorous species, and lentic species. Therefore, it is necessary to improve water quality by reducing the load of urban pollutants and to pay attention to the conservation and restoration of aquatic ecosystems.

A Study on the Space Organization and Garden Language of Mongsimjae in Namwon (남원 몽심재(夢心齋)의 정원구성과 조형언어 해석)

  • Rho, Jae-hyun;Choi, Yung-hyun;Shin, Sang-sup
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.32-45
    • /
    • 2014
  • In this study, the characteristics of Mongsimjae in Namwon-si, Jeollabuk-do have been researched focusing on the writings engraved in huge stones and rocks of pavilion standing beside a lotus pond and its formative languages in the garden has been interpreted as follows. Name of pavilion(堂號) Mongsimjae(夢心齋) includes a classical scholar's spirit, refusing to serve two kings and homecoming after resignation from a government office(歸去來) of Songam(松菴) Park Moonsu(朴門壽), an ancestor who has brought to the Juksan(竹山) Park's family again. A pavilion standing beside a lotus pond(蓮塘) built in the reception garden is a gardening facility symbolizing 'Yeondang(蓮堂)' Park Dongsik(朴東式) who built Mongsimjae. The bamboo hill connected to the backyard seems to be relevant to 'Juksan', the family clan of Mongsimjae's owner and this kinds of intention can be found in the bamboos in the outer garden naturally led to inside the garden through the flower beds. The purpose for the western arrangement of the main building and gate contrary to the 'chukjwamihyaug'(丑坐未向; a direction toward to the south-southwest) of the prospect of Sarangchae(guesthouse) is interpreted to naturally attract people's eyes to the pavilion standing beside a lotus pond and to mitigate the sense of closure resulting from the huge stones located in the reception garden. Also the writing engraved in the three huge stones, 'Jonsimdae(存心臺)', implies that it is a place where was selected with heart by Juksan Park family who settled down in Homsil, Namwon after 'Haengchon(杏村) Park Jaryang(朴子良)' in Yiphyangjo(入鄕祖), Namwon and 'Jeongwa(靖窩)' is interpreted as a signature representing that it is the most comfortable house where Jeongwa Park Haechang(朴海昌: 1876~1933), the third owner of Mongsimjae, has lived. The pavilion standing beside a lotus pond of the 'Bangjibangdo(方池方島; square pond and square island)' type has no lotus for now and waterside cornerstones roughly piled with broken stones naturally mitigate the slope. There are two water inflows gathering rainwater in the reception garden other than the water inflow of valley and the upper-side water inflow was built using a high waterfall method. The middle island cut into a square was designed to use in two ways, as 'island' or 'steppingstone', according to the water level and the old name of the pavilion standing beside a lotus pond was revealed as 'Cheonundam(天雲潭)' from the engraved writing located in the side of the middle island. In addition, 'Imni(臨履)', engraved writing in the finishing stone of waterside by citing a line of 'Sigyeong(詩經)', implies 'Be a upright classical scholar who pays close attention to one's own behaviors' and 'Jeongchuk(渟?)' is interpreted as a message that desires the eternal staying of the Juksan Park family's wealth. Ultimately, the writings engraved in the huge stones and rocks of the pavilion standing beside a lotus pond are interpreted as a symbol language that wishes the heaven protects and maintains the wealth of the Juksan Park family who is the owner of Mongsimjae.

The Rebuilding and Patronage of Naksansa Temple in Joseon Royal Family (조선왕실의 낙산사(洛山寺) 중창과 후원)

  • Lee, Sang-Kyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.2
    • /
    • pp.116-139
    • /
    • 2017
  • Naksansa Temple was famous for a miracle temple where Lee Haeng-ri(李行里), King Ikjo(翼祖), had prayed for offspring and soon begat King Dojo(度祖). According to the First King's Annals("太祖實錄"), King Dojo was the person who directly received prophecy of founding a Joseon. For these reasons, Naksansa Temple received attention concerning the foundation of Joseon. The birth story of King Dojo and his father's prayer at the Avalokitesvara Bodhisattva cave(觀音窟), Naksansa Temple, was well known among the noblemen and royal families until the Late Joseon period. Lee Seoung gye(李成桂) paid particular attention to the Naksansa Temple, and King Sejo(世祖) also made people rebuild the temple when he went for a royal tour in Gangwon-do. Naksansa Temple was built during the time when King Sejo made many temples in order to strengthen the royal authority. King Sejo made people extensively rebuild the temple, praying for health and longevity of King Yejong(his son). King Sejo's will of rebuilding the Naksansa Temple was very strong. The residents of the area had to pay a huge cost because the rebuilding of the Naksansa Temple was a big construction. Hak-yeol(學悅), who had a responsibility of rebuilding the Naksansa Temple, forcedly obtained supplies as he received protection from the royal family. Naksansa Temple thrived with the protection of the royal family after rebuilding. King Yejong and Seongjong gave Naksansa Temple slaves and fields(田地). He also bestowed upon the temple the salts which was the tribute paid by Gangwon-do. In order to protect the precincts of the Naksansa Temple, the government closed the Yang Yang Main Street near Naksansa Temple and built a new road. And the signs of preventing fishing(捕漁) was built along the coast of Naksan in four kilometers in order to keep people out. Although the Naksansa Temple declined in the late Joseon period, it still received support under the protection policy and maintained its reputation as an original Buddhist shrine.

An Analysis of a 100-Years-Old Map of the Heritage Trees in Jeju Island (제주도 노거수 자연유산의 100년 전과 현재 분석)

  • Song, Kuk-Man;Kim, Yang-Ji;Seo, Yeon-Ok;Choi, Hyung-Soon;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.20-29
    • /
    • 2019
  • The purpose of this study is to verify and reconstruct the record information for big old trees of Jeju on the basis of the precise map of Jeju island in 1918 which was produced 100 years ago. For the analysis of high altitude, coordinate system and georeferencing were performed by selecting representative points using ArcGIS. We extracted digitized information by using point extraction method and extracted attribute information based on legend type and relative size in map. Based on the map of the past 100 years ago, the present situation of the big old tree in Jeju was analyzed and their characteristics were analyzed. In addition, based on the information of the protected big old trees in present, we discussed the characteristics of past tree (1918), present tree (2019), and contribution of big old tree in Jeju landscape and vegetation. As a result, 1,013 individuals were distributed in Jeju Island 100 years ago. Even when it was intensive in the use of timber, the big old trees were protected, and contributed as a representative component of Jeju's unique landscape. The remaining distribution of Jeju's big old tree is 159 trees. As in the past, distribution has been confirmed around the lowlands, but declines in numbers are found throughout the island. The major factors for the decline of individuals are large-scale development projects such as reaching the limit of life, natural disturbance (typhoon, disease, pest, drought, etc.). However, it is presumed that a large number of individuals have played a leading role in shaping the current forests as contributing to important species sources in the restoration process of Jeju vegetation. However, it is presumed that a large number of individuals (405) have played a leading role in forming the present forest by contributing to the species pool in the restoration process of Jeju vegetation.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.