• Title/Summary/Keyword: 충동형 터빈

Search Result 50, Processing Time 0.025 seconds

An experimental study on the flow characteristics of a supersonic turbine cascade as the leading edge shape and the nozzle-cascade gap (초음속 터빈 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.349-354
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested for various blade leading edge shapes and gaps between the nozzle and cascade. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

An Experimental Study on the Flow Characteristics of a Supersonic Turbine Cascde as Nozzle Installation Angle (노즐 설치각에 따른 초음속 터빈 익렬의 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Jeong Soon-In;Kim Kui-Soon;Park Chang-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a sin91e pass Schlieren system. The supersonic cascade with 3-dimensional supersonic nozzle was tested over a wide range of nozzle installation angle. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

An experimental study on the flow characteristics of a 2-D supersonic turbine with pressure ratio (압력비에 따른 2차원 초음속 터빈의 유동특성에 대한 실험적 연구)

  • Jeong Soo-In;Kim Kui-Soon;Kim Jin-Han;Lee Eun-Seok;Cho Jong-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.99-108
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested over a wide range of pressure ratio. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings (노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Choi, Byoung-ik;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.

Development Status of a Turbopump for 30-ton Thrust Level of Engine (30톤급 액체로켓엔진용 터보펌프 개발현황)

  • Kim Jin-Han;Hong Soon-Sam;Jeong Eun-Hwan;Choi Chang-Ho;Jeon Seong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.375-383
    • /
    • 2005
  • The present paper describes the first development of a LOX/kerosene type turbopump in Korea. The liquid rocket engine, that the turbopump can be applied to, has a 30-ton(metric) level of vacuum thrust and employs a gas generator cycle. The turbopump consists of two single-stage centrifugal pumps, that is, LOX and kerosene pumps, and one single-stage impulse turbine. Inter-propellant seal(IPS) is located between the LOX pump and the kerosene pump to avoid any interaction between the propellants. A series of component and TPU(Turbopump Unit) test has been completed in the level of simulant propellants and ready for hot firing tests.

  • PDF

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.

Performance Design of Turbopump Type Liquid Rocket Engine System with Separate Flow Cycle (터보펌프 방식을 사용하는 개방형 가스발생기 사이클 로켓엔진의 성능설계)

  • Park Byunghoon;Yang Heesung;Kim Wonho;Ju Daesung;Yoon Woongsup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.123-127
    • /
    • 2005
  • LRE(liquid rocket engine) performance design code with several modules for each engine component has been developed for a preliminary design purpose. Thrust chamber, non-cryogenic centrifugal pump, single stage axial impulse turbine, gas generator and exhaust pipe for extra thrust have been considered. For simplicity, pump exit pressures are fixed, which eliminates pressure balancing problem between thrust chamber and turbopump unit. In this paper, calculated performance parameters with system flow charts and the design methodologies for each component are briefly presented and the results are compared with tile real engine specification.

  • PDF

Turbopump System Performance Design for Conceptual Design of Separate Flow Cycle LRE System (개방형 액체로켓엔진시스템 개념설계를 위한 터보펌프시스템 성능설계)

  • Yang Hee-Sung;Park Byung-Hoon;Kim Won-Ho;Ju Dae-Sung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.128-133
    • /
    • 2005
  • In this study, performance design programs for components of a turbopump unit (TPU) in a Liquid Rocket Engine (LRE), that has non-cryogenic centrifugal pumps and 1-stage impulse turbine with partial admission nozzle, were developed. The programs were integrated in a TPU module by balancing the mass flow rate for pump-turbine power, and the module was inserted into the LRE system conceptual design program. The fundamental design conditions, satisfying LRE system requirements and minimum mass flow rate condition of gasgenerator, were found and compared with data from a Russian liquid rocket engine.

  • PDF

Study of Application of Impulse Turbine with Staggered Blades to Improve the Performance for Wave Energy Conversion (파력발전용 임펄스터빈의 효율 향상을 위한 Staggered Blade의 적용에 대한 연구)

  • Moon, Jae-Seung;Shin, Seung-Ho;Hyun, Beom-Soo;Kim, Gil-Won;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.845-852
    • /
    • 2007
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the impulse turbine with staggered blade to improved performance by numerical analysis using commercial CFD code, FLUENT Maximum value of axial airflow velocity during exhalation is higher than that during inhalation This paper deal with special-type of Impulse Turbine so-called "Staggered Blade" for more efficiency to making air flow direct to on pressure side. Also, this paper has proposed special-type turbine with self-pitched blade more efficient.

An Experimental Study on the flow Characteristics of a Supersonic Turbine Cascade as the Leading Edge Shape and the Nozzle-Cascade Cap (초음속 터번 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan;Jeong Ho-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.66-72
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested for various blade leading edge shapes and gaps between the nozzle and cascade. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.