• 제목/요약/키워드: 충돌 회피 경로 계획

검색결과 54건 처리시간 0.023초

멀티 모바일 로봇 시스템의 충돌회피 경로 계획 : 퍼지 및 포텐셜 필드 방법 적용 (Collision Avoidance Path Planning for Multi-Mobile Robot System : Fuzzy and Potential Field Method Employed)

  • 안창환;김동원
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.163-173
    • /
    • 2010
  • In multi-mobile robot environment, path planning and collision avoidance are important issue to perform a given task collaboratively and cooperatively. The proposed approach is based on a potential field method and fuzzy logic system. For a global path planner, potential field method is employed to select proper path of a corresponding robot and fuzzy logic system is utilized to avoid collisions with static or dynamic obstacles around the robot. This process is continued until the corresponding target of each robot is reached. To test this method, several simulation-based experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

강화학습과 Motion VAE 를 이용한 자동 장애물 충돌 회피 시스템 구현 (An Auto Obstacle Collision Avoidance System using Reinforcement Learning and Motion VAE)

  • 사정;구태홍;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권4호
    • /
    • pp.1-10
    • /
    • 2024
  • 컴퓨터 애니메이션 및 로보틱스 분야에서 장애물을 회피하면서 목적지에 도착하는 것은 어려운 과제이다. 특히 이동 경로의 계획과 적절한 동작의 계획을 동시에 수행하는 것은 기존에 많이 다루어지지 않은 연구분야이다. 최근 연구자들은 데이터 기반 생성 모델인 VAE(Variational Auto-Encoder)를 활용하여 캐릭터 모션을 생성하는 문제를 활발하게 연구해왔다. 본 연구에서는 VAE 생성 모델을 동작 공간으로 확장하고, 잠재 공간에서 강화학습을 적용한 MVAE 모델을 활용한다[1]. 이 접근 방식을 통해 학습된 정책을 사용하면 에이전트는 고정된 장애물과 움직이는 장애물을 모두 피하면서, 자연스러운 움직임으로 목적지에 도달할 수 있다. 캐릭터는 무작위 방향으로 이동하는 장애물을 견고하게 회피할 수 있었고, 기존 연구보다 성능이 뛰어나고 학습 시간도 단축됨을 실험적으로 보였다.

가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획 (Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle)

  • 박성국;이지홍;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

장애물의 기하투영에 의한 일차매개곡선을 이용한 충돌회피 경로계획 (A collision-free path planning using linear parametric curve based on geometry mapping of obstacles)

  • 남궁인
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.1992-2007
    • /
    • 1997
  • A new algorithm for planning a collision-free path is developed based on linear prametric curve. In this paper robot is assumed to a point, and two linear parametric curve is used to construct a path connecting start and goal point, in which single intermediate connection point between start and goal point is considered. The intermediate connection point is set in polar coordinate(${\theta}{\delta}$) , and the interference between path and obstacle is mapped into CPS(connection point space), which is defined a CWS GM(circular work space geometry mapping). GM of all obstacles in workspace creates overlapping images of obstacle in CPS(Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The empty area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidian Space. A GM based on connection point in elliptic coordinate(${\theta}{\delta}$) is also developed in that the total length of path is depend only on the variable .delta.. Hence in EWS GM(elliptic work space geometry mapping), increasing .delta. and finding the value of .delta. for collision-free path, the shortest path can be searched without carring out whole GM. The GM of obstacles expersses all possible collision-free path as empty spaces in CPS. If there is no empty space available in CPS, it indicates that path planning is not possible with given number of connection points, i.e. path planning is failed, and it is necessary to increase the number of connection point. A general case collision-free path planning is possible by appling GM to configuration space obstacles. Simulation of GM of obstacles in Euclidian space is carried out to measure performance of algorithm and the resulting obstacle images are reported.

신경회로망을 이용한 8축 로봇의 충돌회피 경로계획 (Collision-Avoidance Task Planning for 8 Axes-Robot Using Neural Network)

  • 최우형;신행봉;윤대식;문병갑;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.184-189
    • /
    • 2002
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

페인팅로보트의 충돌회피 경로계획 (Collision-avoidance path planning for spray painting robots)

  • 이정재;서석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.545-550
    • /
    • 1991
  • Recently, the use of robots for painting operations has received much attention, as it is a powerful means for automation and quality improvement. Collision-avoidance is a key issue in the path planning for painting operations. In this paper, we develop a computationally efficient algorithm for the generation of collision-free path for two types of motion: a) Gross motion when the robot approaches the painting area, and b) Fine motion while spraying the surface. The former is a typical collision-avoidance problem, but the latter calls for special attention as the painting mechanics has to be incorporated into path planning. The developed algorithm is applied for the internal coating of the car body whose structure is the major source of collision.

  • PDF

국소 거리정보를 얻을 수 있는 다중 이동로보트 환경에서의 Hopfield 신경회로 모델을 이용한 충돌회피 경로계획 (A collision-free path planning for multiple mobile robots by using hopfield neural net with local range information)

  • 권호열;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.726-730
    • /
    • 1990
  • In this paper, assuming that local range information is available, a collision-free path planning algorithm for multiple mobile robots is presented by using Hopfield neural optimization network. The energy function of the network is built using the present position and the goal position of each robot as well as its local range information. The proposed algorithm has several advantages such as the effective passing around obstacles with the directional safety distance, the easy implementation of robot motion planning including its rotation, the real-time path planning capability from the totally localized computations of path for each robot, and the adaptivity on arbitrary environment since any special shape of obstacles is not assumed.

  • PDF

SOM(Self-Organization Map)을 이용한 로보트 매니퓰레이터 충돌회피 경로계획 (Collision-Free Path Planning for Robot Manipulator using SOM)

  • 이종우;이종태
    • 대한산업공학회지
    • /
    • 제22권3호
    • /
    • pp.499-515
    • /
    • 1996
  • The basic function of on industrial robot system is to move objects in the workspace fast and accurately. One difficulty in performing this function is that the path of robot should be programmed to avoid the collision with obstacles, that is, tools, or facilities. This path planning requires much off-line programming time. In this study, a SOM technique to find the collision-free path of robot in real time is developed. That is, the collision-free map is obtained through SOM learning and a collision-free path is found using the map in real time during the robot operation. A learning procedure to obtain the map and an algorithm to find a short path using the map is developed and simulated. Finally, a path smoothing method to stabilize the motion of robot is suggested.

  • PDF

다관절 로보트를 위한 충돌 회피 경로 계획 (Collision-free path planning for an articulated robot)

  • 박상권;최진섭;김동원
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.629-634
    • /
    • 1995
  • The purpose of this paper is to develop a method of Collision-Free Path Planning (CFPP) for an articulated robot. First, the configuration of the robot is formed by a set of robot joint angles derived fromm robot inverse kinematics. The joint space that is made of the joint angle set, forms a Configuration space (Cspace). Obstacles in the robot workcell are also transformed and mapped into the Cspace, which makes Cobstacles in the Cspace. (The Cobstacles represented in the Cspace is actually the configurations of the robot causing collision.) Secondly, a connected graph, a kind of roadmap, is constructed from the free configurations in the 3 dimensional Cspace, where the configurations are randomly sampled form the free Cspace. Thirdly, robot paths are optimally in order to minimize of the sum of joint angle movements. A path searching algorithm based on A is employed in determining the paths. Finally, the whole procedures for the CFPP method are illustrated with a 3 axis articulated robot. The main characteristics of the method are; 1) it deals with CFPP for an articulated robot in a 3-dimensional workcell, 2) it guarantees finding a collision free path, if such a path exists, 3) it provides distance optimization in terms of joint angle movements. The whole procedures are implemented by C on an IBM compatible 486 PC. GL (Graphic Library) on an IRIS CAD workstation is utilized to produce fine graphic outputs.

  • PDF

스카라 로봇을 위한 충돌 회피 경로 계획 (Collison-Free Trajectory Planning for SCARA robot)

  • 김태형;박문수;송성용;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF