• Title/Summary/Keyword: 충돌 위치

Search Result 537, Processing Time 0.031 seconds

RFID Reader Anti-collision Algorithm using the Channel Monitoring Mechanism (채널 모니터링 기법을 이용한 RFID 리더 충돌방지 알고리즘)

  • Lee Su-Ryun;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.35-46
    • /
    • 2006
  • When an RFID reader attempts to read the tags, interference might occur if the neighboring readers also attempt to communicate with the same tag at the same time or the neighboring readers use the same frequency simultaneously. These interferences cause the RFID reader collision. When the RFID reader collision occurs, either the command from the reader cannot be transmitted to the tags or the response of the tags cannot receive to the reader correctly, Therefore, the international standard for RFID and some papers proposed the methods to reduce the reader collision. Among those, Colorwave and Enhanced Colorwave is the reader anti-collision algorithm using the frame slotted ALOHA based a TDM(Time Division Multiplex) and are able to reduce the reader collision because theses change the frame size according to a collision probability. However, these can generate the reader collisions or interrupt the tag reading of other readers because the reader that collides with another reader randomly chooses a new slot in the frame. In this paper, we propose a new RFID reader anti-collision algorithm that each reader monitors the slots in the frame and chooses the slot having the minimum occupation probability when the reader collision occurs. Then we analyze the performance of the proposed algorithm using simulation tool.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Collision Behavior Comparison of Offshore Wind Tower as Type of Support Structure (지지구조의 형식에 따른 해상풍력타워의 선박충돌거동비교)

  • Lee, Gye-Hee;Kwag, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • The collision behaviors of the tripod and jacket structures, which are considered as support structures for offshore wind towers at the Southwest sea of Korea, were compared by nonlinear dynamic analysis. These structures, designed for the 3 MW capacity of the wind towers, were modeled using shell elements with nonlinear behaviors, and the tower structure including the nacelle, was modeled by beam and mass elements with elastic materials. The mass of the tripod structure was approximately 1.66 times that of the jacket structure. A barge and commercial ship were modeled as the collision vessel. To consider the tidal conditions in the region, the collision levels were varied from -3.5 m to 3.5 m of the mean sea level. In addition, the collision behaviors were evaluated as increasing the minimum collision energy at the collision speed (=2.6 m/s) of each vessel by four times, respectively. Accordingly, the plastic energy dissipation ratios of the vessel were increased as the stiffness of collision region. The deformations in the wind tower occurred from vibration to collapse of conditions. The tripod structure demonstrated more collision resistance than the jacket structure. This is considered to be due to the concentrated centralized rigidity and amount of steel utilized.

A Stack Bit-by-Bit Algorithm for RFID Multi-Tag Identification (RFID 다중 태그 인식을 위한 스택 Bit-By-Bit 알고리즘)

  • Lee, Jae-Ku;Yoo, Dae-Suk;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.847-857
    • /
    • 2007
  • For the implementation of a RFID system, an anti-collision algorithm is required to identify multiple tags within the range of a RFID Reader. A Bit-by-Bit algorithm is defined by Auto ID Class 0. In this paper, we propose a SBBB(Stack Bit-by-Bit) algorithm. The SBBB algorithm save the collision position and makes a query using the saved data. SBBB improve the efficiency of collision resolution. We show the performance of the SBBB algorithm by simulation. The performance of the proposed algorithm is higher than that of BBB algorithm. Especially, the more each tag bit streams are the duplicate, the higher performance is.

Development of a Framework for Anti-Collision System of Moving Drilling Machines on a Drill Floor (시추 작업장의 이동식 시추 장비 충돌 방지 시스템을 위한 프레임워크 개발)

  • Lee, Jaeyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.330-336
    • /
    • 2020
  • An anti-collision system between equipment is essential on a drill floor where multiple moving machines are operated simultaneously. This is to prevent accidents by halting the machines when required, by inspecting possibility of a collision based on the relative position data sent by the equipment. In this paper, we propose a framework for an Anti-Collision System (ACS) by considering expandability of the number of machines and computational speed, to promote development of drilling machines and corresponding ACS software. Each drilling equipment is represented as an object in the software with its own message format, and the message is constructed with serialization/deserialization to manage any additional equipment or data. The data handling process receives the current status of machines from the drilling control network, and relays a collision related message (including bypass signal) back to the machines. A commercial visualization software shows the bounding boxes moving with the equipment and indicates probable collision. It has been determined that the proposed system maintains total execution time below 5ms to process data from the network and relay the information hence, the system has no effect on the machine control systems having 100ms control cycle.

Path Planning for Mobile Robots Using Fuzzy Potential Field Method (퍼지 포텐셜 필드를 이용한 이동로봇의 경로 계획)

  • Woo, Kyoung-Sik;Park, Jong-Hun;Kim, Jin-Hwan;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1900-1901
    • /
    • 2011
  • 본 논문은 이동로봇의 동적 장애물 회피를 위해 퍼지 포텐셜 필드 알고리즘을 제안하였다. 기존의 포텐셜 필드 알고리즘은 장애물의 위치와 속도에 따라 장애물과의 충돌 문제, 회피 경로 문제 및 목표지점으로의 도착시간 문제가 발생한다. 이를 보완하기 위해 퍼지시스템을 이용하여 포텐셜 필드 척력함수의 가중치를 장애물의 위치와 속도에 따라 변경함으로써 제안된 알고리즘의 효율성을 시뮬레이션을 통해 확인하였다.

  • PDF

Application of Satellite Data to Marine Traffic Control (인공위성 데이터를 이용한 해상교통 관리 방법)

  • 양찬수;이한진;김선영
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.556-561
    • /
    • 2003
  • 선박에 의한 해난사고의 대부분을 차지하고 있는 충돌과 좌초를 예방하고 안전항행환경을 확보하기 위해서는 선박들의 교통량 정보 및 위치정보, 해상환경정보를 얻지 않으면 안 된다. 본 연구에서는 인공위성데이터를 통해 얻어진 선박정보를 추출하는 방법에 대해서 조사하고, 다시 얻어진 선박정보를 이용해서 장래위치에 있어서의 해상교통환경 시뮬레이션을 했다. 즉, 장래 해상교통상황을 정량화 된 값으로 표현하여 자동차용 교통신호와 비슷한 선박들의 교통제어신호를 제공함으로써 해상교통안전을 확보할 수 있는 시스템의 기초적 연구결과를 제시했다.

  • PDF

Reader Anti-Collision Algorithm via Estimation of Channel Congestion (채널 혼잡 추정 리더 충돌 방지 알고리즘)

  • Yoo, Jun-Sang;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.46-55
    • /
    • 2009
  • In RFID field, when the neighboring readers try to occupy the same or adjacent channel simultaneously, there exists reader-to-reader interference; it calls reader collision. From the reader collision, the tags cannot response correctly query from the reader. Reader anti-collision schemes have been developed, and particularly, the Listen-Before-Talk(LBT) scheme is proposed to avoid reader collision in ETSI in multi channel environment. However, in ETSI, there is a drawback that the reader collision does not decreases effectively because the reader selects randomly a channel without considering the channel environment and readers try to occupy the channel concurrently. In this paper, we propose a algorithm based on LBT scheme considering multi channel environment as well as made up for the drawbacks of LBT The proposed algorithm applies random backoff, the collision avoidance mechanism. And it can reduce delay because of our proposed estimation mechanism Simulation using OPNET shows that the proposed algorithm achieves higher superiority than that of the simple algorithms in sparse and dense reader mode.

Improved variable bits M-ary QT conflict resolution algorithm for discrete m-bits recognition in RFID system (RFID 시스템에서 불연속 m-bits 인식을 위한 개선된 가변비트 M-ary QT 충돌해소 알고리즘)

  • Kim, Kwan-woong;Kim, Byun-gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1887-1894
    • /
    • 2016
  • In the RFID system, the reader transmits a query message to tags in order to identify a unique ID of tags within its detection range. The procedures for arbitrating a collision is essential because the multiple tags can response simultaneously in the same to the query of the Reader. This procedure is known as conflict resolution algorithm and it is a key technology in the RFID system. In this paper, we proposed a variable bits M-ary QT algorithm based on Manchester coding techniques. The proposed algorithm use the location information of the collision bits in the reader and tags. The proposed algorithm can reduce the number of the query-response cycle because it is capable of recognizing discontinuous bits and a variable number of bits. From computer simulation, the proposed method give better performance than the conventional M-ary QT techniques in terms of response, recognition efficiency, communication overhead.

Reminder module design to prevent collision accidents while wearing HMD (HMD 착용 중의 충돌 사고 방지를 위한 알리미 모듈 설계)

  • Lee, Min-Hye;Cho, Seung-Pyo;Shin, Seung-Yoon;Lee, Hongro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1653-1659
    • /
    • 2022
  • Virtual reality content provides users with a high sense of immersion by using HMD devices. However, while wearing the HMD device, it is difficult to determine the user's location or distance from obstacles, resulting in injuries due to physical collisions. In this paper, we propose a reminder module to prevent accidents by notifying the risk of collision with obstacles while wearing the HMD device. The proposed module receives the user's state from the acceleration and gyro sensor and determines the motion that is likely to cause a collision. If there is an obstacle in the expected collision range, a buzzer sounds to the wearer. As a result of the experiment, the accuracy of obstacle detection in the state of wearing the HMD was 86.6% in the 1st stage and 83.3% in the 2nd stage, confirming the performance of the accident prevention reminder.