• Title/Summary/Keyword: 충돌제트 인젝터

Search Result 10, Processing Time 0.03 seconds

액체 로켓용 충돌형 인젝터의 분무분포 특성에 관한 실험적 연구

  • 정기훈;윤영빈;황상순
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.3-3
    • /
    • 1999
  • 액체 연료 로켓엔진의 인젝터에 대한 연구는 연소 효율과 안정성 향상에 초점을 두어왔다. 그 중 충돌분사형 인젝터는 구조가 매우 간단하면서 많은 유량의 연료를 분사시킬 수 있기 때문에 개발 초기부터 많은 연구가 이루어졌으며 실제 여러 엔진에 응용된 바 있다. 그동안의 충돌분무에 대한 연구는 주로 제트의 충돌시 생기는 액막의 분열 과정을 이해하는 데에 관심이 있어 왔으며, 아직까지는 실험적 기법에 기초하여 근사적인 분열 모델을 제시하는 데에 그치고 있다.

  • PDF

Papers : A Study of Numerical Impinging Jet Models for a Like - doublet Injector of Liquid Rockets (논문 : 액체 로켓의 Like - doublet 인젝터의 충돌 제트 수치 모델에 대한 연구)

  • Park,Jong-Hun;Jeong,Gi-Hun;Yun,Yeong-Bin;Kim,Yeong-Han;Lee,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.64-76
    • /
    • 2002
  • 기존의 이론적 연구와 실험적 연구를 바탕으로 충돌 제트의 수치 모델을 개발하였다. 본 모델은 like-doublet 충돌제트로부터 생성되는 액적의 모든 특성을 액막이 분열되는 시점에서 결정한다. 액적 특성을 결정하기 위해 이론적 연구로부터 얻어진 액막 두께, 액주의 직경, 액적 크기와 실험적 연구로부터 얻어진 액막/액적 속도, 액막 분열 거리, 분열 주파수, 액적 질량 유량 분포를 이용하였다. 액적의 질량 유량 분포는 Laplace 분포로부터 표준 편차를 이용하여 모사하였다. 또한 실험 결과를 이용하여 액막 분열 거리, 분열 주기, 표준 편차에 대한 경험식을 유도하였다. 개발된 모델은 정성적인 분무 패턴뿐만 아니라 정량적인 SMD 및 질량 유량 분포에서 실험 결과와 잘 일치한다.

A study on the Velocity Distribution of the Liquid Sheet Formed by Two Impinging Jets at Low Velocities (저속 충돌제트에 의해 형성되는 액막의 속도 분포에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • In this research, the velocity distribution of the liquid sheet formed by two impinging jets at low velocities are measured using LDV. The spatial distribution of the sheet velocity as well as the effects of impinging anlge and jet velocity on the sheet velocity are examined. The sheet velocity is highest along the sheet axis and it decreases with the increase of the azimuthal angle. With the increase of the impinging angle, the average sheet velocity is decreased due to the increased impact momentum. The average sheet velocity is proportional to the jet velocity but it is always higher than the jet velocity. This result is against the fact that the sheet velocity can be assumed to be equal to the jet velocity in the previous researches.

  • PDF

A Study on the Characteristics of the Spray Produced by Two Impinging Jets (충돌제트로 생성되는 분무의 특성에 관한 연구)

  • Kang, B.S.;Poulikakos, D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper an experimental study of a spray created by two impinging jets is presented utilizing a novel two-reference-beam double-pulse holographic technique. Visualization of the overall spray pattern as well as measurements on the size and velocity of the droplets were performed with the special emphasis on the effect of physical properties of liquids. The overall spray pattern clearly revealed the inherent wave nature In the disintegration process of this type of atomization. The structure of liquid elements near the impingement point is indicative of the mechanisms of the disintegration process. Surface tension plays an important role in the droplet size without any noticeable effect on the spray pattern, whereas viscosity affects the structure without any significant effect on the droplet sire. The droplet velocities were not affected by liquid properties.

  • PDF

Design of Unlike Split Triplet Impinging Element for Jet Mixing (혼합성능 개선을 위한 분리 삼중충돌 요소의 설계)

  • 조용호;김경호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.225-232
    • /
    • 2003
  • With an aim placed on its exploitation on practical injector design, liquid phase mixing due to unlike split triplet impinging element is experimentally investigated by a series of cold tests. Non-reacting kerosene/water spray simulates the kerosene/LOX propellant combination. Measurements of local mixture ratio distribution were made for different injection configurations and different momentum ratios. Mixing and mixing controlled characteristic velocity efficiencies are measured in terms of oxidizer/fuel jet momentum ratio from 0.5 to 8. Extent of mixing and its influence on hot performance are estimated in terms of mixing efficiency and mixing controlled characteristic velocity. Envelope of design locus for optimum mixing quality and corresponding maximum hot performance are proposed. Effects of momentum ratio, orifice diameter ratio and jet velocity ratios are also presented and discussed.

  • PDF

Interferometric Measurements of the Thickness Distribution of the Liquid Sheet Formed by Two Impinging Jets (충돌 제트에 의해 형성되는 액막의 두께 특성에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.214-223
    • /
    • 2000
  • In this research, a study on the characteristics of the liquid sheet formed by two impinging jets is presented. Using the interference phenomena of light, the thickness of the liquid sheet, which seems to heavily affect the size of the droplets, is measured and compared with existing theoretical modelings. Thinner liquid sheet is produced with larger impinging angle, smaller orifice diameter, and higher azimuthal angle but the jet velocity doesn't affect the thickness. More viscous liquid produces thicker liquid sheet. The theoretical modelings predict the same trend as the experiments but the thickness values are overestimated at low azimuthal angles. This difference is gradually decreased as the azimuthal angle is increased: The breakup mechanism of the droplets from the liquid sheet is visualized by a high speed camera. The crest around the edge of the liquid sheet is protruded with the accumulation of liquid at the end of protuberance, which contracts into a spherical shape and then becomes detached when the stem breaks down, producing large droplets with a few small size of satellites.

Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid (초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화)

  • Song, Juyeon;Choi, Myeung Hwan;An, Jeongwoo;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2021
  • Based on surrogate model, a hydrocarbon mixture was analyzed by visualizing the impinging break up mechanism in subcritical and supercritical conditions. Decane and methylcyclohexane with different critical pressures and temperatures were selected as experimental fluids. The impinging injector was installed inside the chamber, and the spray was visualized through a speed camera in subcritical and supercritical conditions. The injection condition of the mixture and chamber was kept constant at Pr(P/Pc) = 1, and Tr(T/Tc) was increased from 0.48 to 1.02. As Tr increased, the spray angle increased, and the sheet length decreased as the properties of the mixture reached each critical point. In addition, when the mixture approached the near critical point, it was shown that the change in density gradient was largely observed out of the impinging break up mechanism.

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

Analysis of the Spray Distribution Characterization of Impinging Jet Injectors for Liquid Rockets Using PLIF Technique (PLIF 기법을 이용한 액체로켓용 충돌분사 인젝터의 분무분포 특성 해석)

  • 정기훈;윤영빈;황상순
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2000
  • Most researches for impinging jet spray have been focused on under-standing the breakup mechanism of a liquid sheet formed by the collision of jets and modeling the spray breakup using experimental data. For this reason, there have been few studies on the characteristics of the spatial spray distribution which affects significantly the combustion efficiency. Hence, we measured the radial distribution of fuel massflux using a like-doublet type injector. Instead of PDPA(Phase Doppler Particle Analyzer) which has been used only for the point measurement of the drop size of spray, PLIF(Planar Laser Induced Fluorescence) technique was developed lot the 2-D measurement of the massflux distribution of spray Indirect photography technique was also used to verify PLIF data.

  • PDF

로켓 엔진 연소 성능에 관한 이론적.실험적 평가

  • Kim, Yong-Wook;Kim, Young-Han;Jung, Yong-Gap;Cho, Nam-Gyung;Park, Jung;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.8-8
    • /
    • 1999
  • 로켓 엔진 설계는 연소 과정 동안에 발생하는 모든 복잡한 현상을 고려하여 이루어져야하지만 이러한 물리적 변수들을 만족시키면서 설계를 하는 것은 불가능하기 때문에 최근 수치 해석의 발달로 내부 연소 과정에 대환 체계적 접근이 활발히 진행되고는 있으나 아직은 경험과 직관에 따라 각 변수의 중요성을 판단하고 있다고 해도 과언은 아니다. 최근 RP-1과 액체 산소를 추진제로 하는 연소실 압력 200psi, 최대 추력 2.8$\times$$10^{5}$lbf의 액체 엔진 개발을 목표로 본 연구팀은 분사기용 소형 엔진(연소실 압력 200psi, 추력 350lbf) 실험을 시점으로 단계적으로 추력을 증가시키면서 단열재의 삭마 실험과 연소 불안정성을 위한 실험을 준비하고 있다. 첫걸음으로서 135$^{\circ}C$로 FOOF형의 비동류형(unlike) 충돌 제트로 구성되는 3개의 인젝터가 배열된 분사기 시험용 엔진에 관한 실험을 수행 중에 있으나 상대적으로 매우 간단한 엔진임에도 불구하고 실험적으로 내부 연소 과정을 정확히 이해하는 것도 현재로서는 여전히 용이하지 않다.다.

  • PDF