• Title/Summary/Keyword: 충돌속도

Search Result 739, Processing Time 0.028 seconds

Media Access Control Protocol based on Dynamic Time Slot Assignment in Underwater Mobile Ad-hoc Network (동적 타임 슬롯 할당에 기반한 수중 모바일 Ad-hoc 네트워크에서의 매체접근제어 프로토콜)

  • Shin, Seung-Won;Kim, Yung-Pyo;Yun, Nam-Yeol;Park, Soo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.81-89
    • /
    • 2011
  • Underwater wireless network can be useful in various fields such as underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, and vessel sinking exploration. We need to develop an efficient design for Medium Access Control (MAC) protocol to improve multiple data communication in underwater environment. Aloha protocol is one of the basic and simple protocols, but it has disadvantage such as collision occurs oftenly in communication. If there is collision occured in RF communication, problem can be solved by re-sending the data, but using low frequency in underwater, the re-transmission has difficulties due to slow bit-rate. So, Time Division Multiple Access (TDMA) based MAC protocol is going to be used to avoid collisions, but if there is no data to send in existing TDMA, time slot should not be used. Therefore, this paper proposes dynamic TDMA protocol mechanism with reducing the time slots by sending short "I Have No Data" (IHND) message, if there is no data to transmit. Also, this paper presents mathematic analysis model in relation to data throughput, channel efficiency and verifies performance superiority by comparing the existing TDMA protocols.

An Experimental Study on Flocculation and Settling of Fine-grained Suspended Sediments (부유물질의 응접작용 및 침전특성에 관한 실험적 연구)

  • Chu, Yong-Shik;Park, Yong-Ahn;Lee, Hee-Jun;Park, Kwang-Soon;Kweon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.40-49
    • /
    • 1999
  • A laboratory flume experiment, using turbulence-generating acryl tank and natural sediments, was conducted to investigate the effects of salinity, concentration of suspended sediment, turbulence and clay minerals on the flocculation and settling of fine-grained suspended sediments. While experiments were run, a sequence of water samples were taken near the bottom of the tank to analyze the variations of size distribution and relative contents of clay minerals. The results of the salinity experiment indicate that median settling velocity ($W_{50}$) increases linearly with salinity. Different settling processes of suspended sediments under variable concentrations appear to be predictable, depending upon the range of the suspension concentration. At concentrations less than 200 mg/l, $W_{50}$ is rarely varied with concentration probably because of the individual--grain settling mode. In the range of 200 to 13,000 mg/l show $W_{50}$ and concentration a good relationship following an empirical formula: $W_{50}=0.45C^{0.44}$. This relationship, however, no longer holds in concentrations exceeding 13,000 mg/l; instead, a more or less reverse one is shown. This result suggests an effect of hindered settling. The turbulence effect is somewhat different from that of concentration. Turbulence accelerates the flocculation and settling susepended sediments at low concentration (200 mg/l), whereas at high concentration turbulence breaks floes down and impedes the settling. Size distribution of suspended sediments sampled near the bottom of the tank tend to be more negatively skewed and leptokurtic in turbulent conditions compared to those in static conditions. The clay mineral analysis from the sequential water samples shows that over time the content of smectite decreases most rapidly with illite remaining concentrated in suspension. This means that smectite, among other clay minerals, plays the most effective role in the flocculation of fine-grained sediment in saline water.

  • PDF

A Numerical Analysis of the Pressure Drop according to the Shape of TiO2 Photocatalyst-coated Module in a HVAC Duct (HVAC 덕트 내에 설치된 광촉매코팅 모듈의 형상이 압력강하에 미치는 영향)

  • Hwang, Kwang-Il;Koo, Jae-Hyoek;Kim, Da-Hye;Lee, Hyun-In;Choi, Young-Guk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1055-1062
    • /
    • 2011
  • The purpose of this study is to develop the shape of photocatalyst-coated module for improve the IAQ, which is installed at inside of ductwork and detachable. Including 3 column types(square, circle, diamond) and 2 fin types(diamond and square), totally 5 types are previously declared for numerical analysis and comparison, 5 types are. As the results of numerical analysis, almost the velocity varied at the range of ${\pm}0.3m$ from the module, except the Type A-3(diamond column type) which is affected to ${\pm}0.4m$ range and shows the biggest velocity differences. Among the 5 types, the diamond fin type(Type B-1) is analyzed as the most stable in velocity. And the results of local pressure drop show that the difference of pressure coefficient of Type B-1 is computed as 0.59, and that of Type A-3 is 2.44. Meanwhile, from the effect analysis of the number of module, the flow conflict happens and the pressure difference between before and after the module increases if there are over 3 modules inserted.

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

The Correlation between Concepts on Chemical Reaction Rates and Concepts on Chemical Equilibrium in High School Students (고등학생들의 화학반응속도 개념과 화학평형 개념간의 상관관계)

  • Park, Guk-Tae;Kim, Gyeong-Su;Park, Gwang-Seo;Kim, Eun-Suk;Kim, Dong-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.247-255
    • /
    • 2006
  • The purpose of this study was to investigate the correlation between concepts on chemical reaction rates and concepts on chemical equilibrium in high school students. The subjects of the investigation consisted of 120 third grade students attending high school in K city of Kyunggi province. For this study, questionnaire relevant to the subject of chemical reaction rates and chemical equilibrium was developed and the answers were analyzed. As a result of the study, a large percentage of high school students answered questions on reaction rates correctly, but only a small percentage of the students could give explanations. Many high school students answered questions on the rates of forward reactions correctly, but not the questions on the rates of reverse reactions. For the concepts on chemical equilibrium, many high school students gave correct answers when faced with equilibrium questions that only required the understanding of one side of the reaction. But the students could not answer the questions requiring understanding of both forward and reverse reactions as well. Overall, there was a little high correlation between concepts on chemical reaction rates and concepts on chemical equilibrium in high school students. Especially, high school students with little understanding of reverse reaction rates did not understand that chemical equilibrium is a dynamic equilibrium. Also, high school students with little understanding of the collision mechanism regarding chemical reaction rates did not understand the effect of concentration and catalyst factors on chemical equilibrium. And the correlation between concepts on chemical reaction rates and concepts on chemical equilibrium related to concentration and catalyst factors was low. In conclusion, the formation of scientific concepts on chemical reactions rates can decrease misconceptions on chemical equilibrium. Also the teaching-learning method limited to one side of a reaction can cause difficulty in forming the concepts on chemical dynamic equilibrium. Therefore, the development of a teaching-learning method which covers both the forward and reverse reactions can be effective in helping students form the concepts on chemical equilibrium.

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.

초고속 자기부상형 터보복합분자 펌프 기술 개발

  • Park, Yong-Tae;No, Seung-Guk;Kim, In-Chan;O, Hyeong-Rok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.96-96
    • /
    • 2012
  • 복합분자펌프는 기존의 터보분자펌프 turbine blade에 spiral grooved를 추가하여 초고진공(10-8Pa)에서 저진공(330Pa)까지 넓은 압력범위에서 사용할 수 있고 이 펌프를 사용함으로서 완전 oil free한 진공시스템을 만들 수 있는 특징을 가지고 있다. 특히, 회전체를 비접촉으로 지지하는 자기베어링 방식을 적용함으로써, 진동은 극히 작고 베어링수명은 길면서 중저진공에 대한 배기속도가 크고 임의의 방향으로 접속이 가능하여 반도체 및 디스플레이 제조 공정과 같은 첨단산업의 다양한 분야에 쉽게 적용되고 있으며, 그 적용 분야와 시장은 계속 성장하고 있다. 고 진공과 배기 속도의 달성을 위해서, 고속으로 이동하는 격면과 기체분자를 충돌시켜, 기체 분자를 원하는 방향으로 유도하는 작동원리를 가지고 있다. 특히 공기분자의 밀도가 매우 낮은 희박가스 상태에서 고속 회전하는 blade로 공기분자를 쳐내면서 작동됨으로써 날개의 상하 압력차에 의한 공기력보다도 날개의 고속회전이 매우 중요시되고 압력으로는 10-1 Pa 이하의 분자영역에서 그 성능을 최고로 발휘할 수 있다. 이러한 복합 펌프의 주요 장점은 다음과 같다. 1. 10-8 Pa (10-10 torr) ~ 10 Pa (1 torr) 까지 넓은 영역에서 배기가 가능하다. 2. 탄화수계의 대하여 높은 압축특성을 가지고 있고, 윤활유를 사용하지 않으므로 얻을 수 있는 진공상태가 고청정하다(oil free). 3. 정밀 5축제어 자기베어링으로 완전히 부상하여 회전함으로서 마모가 없고 진동이 최소화하였을 뿐 만 아니라, 또한 운전음도 거의 없다. 4. 설치조건에 제한이 없고 고장이 거의 없다. 특히 복합분자펌프는 탄화수소화합물이 없는 진공을 생성시키면서 구성요소가 간단한 반면 폭넓은 진공대역을 충족하기 때문에 산업계와 연구계의 주요 첨단 분야에서 광범위하게 사용되고 있으며, 최근 반도체 및 디스플레이, 바이오엔지니어링 등의 발전으로 적용분야가 넓어지고 있다.

  • PDF

Assessment of Pedestrian Comfort Levels Based on the Microscopic Features of Pedestrian Traffic Flow (보행교통류 시뮬레이션 모형을 활용한 보행편의성 지표의 개발 및 분석)

  • LEE, Joo-Yong
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.499-509
    • /
    • 2016
  • The pedestrian traffic flow has more complicated microscopic features than vehicular traffic flow. Without any designated lanes or any guidance, pedestrians naturally move and change their routes in two dimensional domain with ease. Thus the assessment of pedestrian comfort level should be considering the microscopic features of pedestrian flow. This study is aimed at developing pedestrian comfort criteria based upon pedestrian flow simulation model. This study suggests three criteria to determine pedestrian comfort level; the deviation of route, the acceleration of walk, and the number of collision. Each criterion, which can address the unique walking patterns of pedestrian flow, is represented as each different function with respect to traffic flow rate. The criteria can be the additional indicators to determine the level of service of pedestrian flow together with traffic flow rate and walking speed.

Simulation of plate deformation due to line heating considering water cooling effects (수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션)

  • Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2470-2476
    • /
    • 2011
  • Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.