• Title/Summary/Keyword: 충격 보호패드

Search Result 9, Processing Time 0.026 seconds

The Study of Impact Energy Control of Door Trim Crash Absorption Using The TRIZ method (트리즈를 활용한 자동차 측면충돌의 도어트림 충격흡수부재의 충돌에너지 조절문제 해결에 관한 연구)

  • Jang, Ik-Kun;Jeon, O-Hwan;Kim, Ho-Jong;Huh, Jeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.28-31
    • /
    • 2007
  • 자동차 측면충돌시 인체의 상해를 줄이기 위하여 도어 시스템 부품 중에 도어트림이 충격을 차단하고 인체를 보호하는 역할을 하고 있다. 차체 판넬이 변형되어 도어트림에 전달되는 충돌 에너지를 패드가 흡수 하는데 중대한 기능을 한다. 이전에 충격흡수 패드는 외곽부위의 수평면에 의존하여 설계되었으며 이 구조는 점진적으로 충격을 흡수 하는데 문제점이 발견 되었는데 트리즈의 6단계 창의성 기법을 적용하여 패드의 주요 특성을 찾아내고 그 특성에 모순을 해결하여 차종에 적용할 수 있는 기본 단면과 설계 자유도가 높은 충격흡수부재를 개발 하였다.

  • PDF

Design of Fall Impact Protection Pads Using 3D Printing Technology and Comparison of Characteristics according to Structure (3D 프린팅 기술을 활용한 낙상충격 보호패드 설계 및 구조에 따른 특성비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.4
    • /
    • pp.612-625
    • /
    • 2018
  • This study designed 16 kinds of basic structure and 4 kinds of modified structure for impact protection pads with a spacer fabric shape. The pad is a structure in which hexagonal three-dimensional units, composed of a surface layer and a spacer layer, are interconnected. Designed pads were printed with flexible $NinjaFlex^{(R)}$ materials using a FDM 3D printer. The printed pads were evaluated for impact protection performance, compression properties and sensory properties. The evaluation of the impact protection performance indicated that basic structures better than CR foam material at 20cm height were DV1.5, DX1.5, DX1.0, DV1.0 and HV1.5. The evaluation of the compression properties for the five types, with good results in the impact protection performance, indicated that DV1.0, DX1.0, DV1.5, HV1.5 and DX1.5 showed good results, respectively. The sensory evaluation of DV1.0, DX1.0, and DV1.5, which with good results when considering both the impact protection performance and the compression performance, showed that DV1.0 were the best for surface, flexibility, compression and weight. Therefore, DV1.0 is shown to be the best structure for protection pads.

Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material (3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.

Development and Evaluation of Fall Impact Protection Pad (낙상충격 보호패드의 개발 및 평가)

  • Park, Jung Hyun;Lee, Jin Suk;Lee, Jeong Ran
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.422-428
    • /
    • 2018
  • In this study, we developed honeycomb pads using foam and polymer gel and verified the impact protection performance of pads for the development of a fall protection pants for elderly women aged 65 and over who have a high risk of fracture due to falls. The results are as follows; In the first experiment, the impact protection performance was evaluated for four honeycomb pad samples (CR foam, EPDM foam, hardness 15 polymer gel, and hardness 30 polymer gel) manufactured to a thickness of 5 mm using a single material. When the force of about 10757N was applied to the specimens, all four pads reduced the impact force to 3100N or less. Polymer gels showed better protection than foam materials. In the second experiment, the thickness of the protective pad was set to 8 mm in order to improve the shock absorbing performance of the protective pad. As a result of evaluating the impact protection performance of the foam single pad and foam gel composite pad, the impact absorbing performance of the foam single pad was better. Finally, four kinds of protection pads were made by assigning the foam single pad and the foam gel composite pad to pants type and underwear type respectively. The pad thickness of the main protection area was set to 8 mm to enhance the protection, and gradually decreased to 5mm and 3mm toward the edge to improve the appearance and fit.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

안벽 방충재의 개선에 관한 연구(1)

  • Sin, Yong-Ju;Jeong, Tae-Gwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.355-358
    • /
    • 2011
  • 방충재(fender)는 항만에서 선박의 안전한 접이안, 계류, 안벽 보호를 하기 위하여 설치된 중요한 안벽 시설 중 하나이다. 기존의 고무 방충재는 접안력에 의한 초기 변형 28% 정도에서 가장 높은 반력이 발생하기 때문에 선박과 안벽에 지속적인 힘을 주기 때문에 안벽 및 선체에 손상을 주고 있다. 이는 잔교식이나 중력식 부두에서도 나타나는 현상이다. 또 선체의 용접 비드에 의하여 방충재 훼손으로 보수 유지비가 증가하고 안벽에 앵커로 고정된 고무 펜더는 유연성이 떨어져 선박 충격에 의한 쉽게 떨어지고 패널패드도 탈락된다. 이 연구에서는 초기 반력이 적은 에어 펜더 혹은 폼 펜더를 제안한다.

  • PDF

Development and Evaluation of Fall Impact Protective Clothing for the Elderly Women (여성 노인을 위한 낙상충격 보호팬츠 개발 및 평가)

  • Park, Jung Hyun;Lee, Jin Suk;Lee, Jeong Ran
    • Fashion & Textile Research Journal
    • /
    • v.20 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • The purpose of this study is to verify the impact protection performance and to evaluate the activity, design, fit, and pad characteristics of the fall impact protection clothing for elderly women. The protective clothing was designed as pants type and underwear type, and an impact protection pad in the form of a tightly connected regular hexagon piece was inserted in the hip and hip joints. The pad was made of two kinds of foam single pad and foam and gel combination pad so that they could be inserted into pants type and underwear type, respectively. The results of the shock absorption performance of the fall impact protective clothing showed that when the impact force of 4601N was applied to the pants type protective clothing, the impact force was reduced by 29% in the foam pad type and 26% in the gel and foam pad type. When the force of 5113N was applied to the underwear type, it decreased by 40% in the foam pad type and by 34% in the gel and foam pad type. As a result of wearing evaluation of subject group, it was found that fit and activity of underwear type was better than that of pants type. Foam pad type was evaluated to be lighter than gel and foam pad type in both the subject and the expert group and the gel and foam pad was evaluated to be more flexible in the expert group.

Evaluation of Physical Properties of Material Combination for Fabricating Protection Pads for Women's Army Combat Uniforms (여군 전투복 내 관절 부위 보호 패드 개발을 위한 설계 변인 조합에 따른 물성 평가)

  • Okkyung Lee;Heeran Lee;Soyoung Kim;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.2
    • /
    • pp.311-322
    • /
    • 2023
  • In this study, the properties of various material combinations were evaluated and an ideal material for fabricating protection pads for women's army combat uniforms was determined. Eight specimens were used for the evaluation: two types of materials, namely thermoplastic polyurethane for 3D printing, T and ethylene-vinyl acetate, E; two infill densities, namely 10%, 10 and 30%, 30; two types of pad designs, i.e., without holes, A and with holes, B; 2×2×2=8 and control E. The tensile strength, flexural strength, impact absorption, and weight of these specimens were evaluated. Results revealed that E was the most flexible material; however, its tensile strength and impact absorption were very low. Protection pads made from T (T-10A, T-10B, T-30A, and T-30B) had excellent tensile strength and impact absorption; however, they had low performance in ease of movement. Alternatively, protection pad with holes and an infill density of 30% produced using a combination of T and E had a high initial tensile modulus and exhibited excellent impact absorption. Moreover, it was flexible and light, which satisfies the standards and conditions required by protection pads. However, if T-E-10A and T-E-30B exhibited low impact absorption, as required, they can be regarded as appropriate materials for protection pads.

Evaluation of Pants Embedded with Motion Adaptable 3D Printing Fall Impact Protective Pads (동작 가변적 3D 프린팅 낙상보호패드가 통합된 팬츠의 평가)

  • Lee, Jinsuk;Park, Junghyun;Lee, Jeongran
    • Journal of Fashion Business
    • /
    • v.26 no.2
    • /
    • pp.143-155
    • /
    • 2022
  • The purpose of this study was to develop protective clothing that could alleviate fall impacts. Fall impact protection pants for elderly women were designed, and motion adaptable hip pads and knee pads printed by 3D printing were integrated into the pants and evaluated. First, the design of the fall impact protection pants with variable motion was semi-loose fitting pants that could be worn and detached from the protective pad. A pad pocket was made in the lining inside the pants so that the protective pad could be fixed to the protective area. Second, in the evaluation of the appearance of the fall impact protection pants, the wearer group had a good score of 4.60 or higher for all questions on color, material, ease, and fit. In the evaluation of the insertion method of the protective pad, the flexibility of the pad, and the weight of the pad, the subjects' scores were 4.30~4.80. The fit of the fall impact protection pants was excellent in the texture and elasticity of the outside and inside of the pants. There was no discomfort due to the pad(4.60), and no difficulty in movement during wearing activities was reported. During squatting, it was evaluated as 4.80, indicating that the motion adaptable hip joint and knee pads were highly effective during operation.