• 제목/요약/키워드: 충격햄머드릴

검색결과 3건 처리시간 0.035초

충격 햄머 드릴의 성능향상을 위한 연구 (Research for Performance Improvement of Impact Hammer Drill)

  • 김재환;박철우;한상용;권남진;강춘구;정영채
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.536-541
    • /
    • 2005
  • This paper Presents the performance test of an impact hammer drill in conjunction with the parameter consideration of coefficient of restitution, lubrication and friction, pressure leakage, vibration damper and production quality. Novel measurement setups are innovated in order to get the Parameter data. The measured data are compared with the computational results, and this comparison gives a confidence on the computational model, which can be used for a optimal design of impact hammer drills.

충격햄머드릴의 타격력 향상을 위한 연구 (A Study on Improving the Impact Force of Impact Hammer Drill)

  • 김재환;정재천;박병규;백복현
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

충격햄머드릴의 기구해석 및 설계 (Modeling and Design of Impact Hammer Drill)

  • 박병규;김재환;백복현;정재천
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF