• Title/Summary/Keyword: 충격완화

Search Result 162, Processing Time 0.021 seconds

Effect of the U.S. Monetary Policy on the Real Economy of the Asia: Focusing on the impact of the exchange rate in Korea, China and Japan (미국의 통화정책이 아시아 실물경제에 미치는 영향: 한국, 중국, 일본의 환율충격을 중심으로)

  • Choi, Nam-Jin
    • International Area Studies Review
    • /
    • v.20 no.2
    • /
    • pp.3-23
    • /
    • 2016
  • In this study, we used actual proof analysis, based on SVAR model according to economy theory, to observe the impact of actual and financial market of Korea, Japan, and China that have adopted quantitative easing export based strategy of growth, an unconventional monetary policy of the U.S. As a result of estimation, it appears that real effective exchange rate rise shock of Korea, Japan, and China against U.S. dollar has a negative influence on current account and index of industrial product, which are real economy. It can be implied that the result is driven from the fact that strong home currency of Korea, Japan, and China decreases price competitiveness of exports, causing negative influence on real economy. The real effective exchange rate shock against U.S. dollar appeared to decrease national bond rate of Korea and Japan, while increasing that of China. In instances of Korea and Japan, it is implied that national bond rate decreases as foreigner investment funds flow in, considering foreign-exchange profit through advanced financial market with high opening extent. On the other hand, because there are strong regulation on opening extent of Chinese financial markets, the influence seems to be greater for domestic policy, rather than a foreign influence. Lastly, Korea showed a more dramatic variable reaction to exchange rate shock compared to Japan or China. It is implied from the result that Korea is relatively more susceptible and fragile in regards of international status of economic size and currency.

Prototype of Fall Impact Protective Pants for Elderly Women (노년 여성을 위한 낙상충격 보호팬츠 디자인 프로토타입)

  • Park, Jung Hyun;Lee, Jeong Ran
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.4
    • /
    • pp.45-60
    • /
    • 2016
  • Elderly women have a high risk of falling down in their daily lives. The purpose of this study is to develop protective pants for elderly women, which will mitigate the impact of falls, and play a major role in reducing injuries. The two types of design were proposed for development of protective pants by selecting pad insertion point and inserting lining for keeping pad in place through the checklist to investigate from the interviews with the medical workers and the investigation of the user requirement. Design A has protective pads in the hip, hip joint, and knee, while design B has protective pads in the hip and hip joint area. For the impact absorbing material, CR (chloroprene rubber) foam was selected for its flexibility, lightness, and impact absorbing capacity, and its pad shapes were designed to produce much flexibility in consideration of the activity and human body fitness of the wearers. Three kinds of pad types, which are the cut type, the porous type, and the honeycomb type, were proposed, and were manufactured to fit into the protective parts according to their design types.

A Numerical Study on the Prediction of Sloshing Impact Pressure (Sloshing 충격압력의 추정을 위한 수치기법에 관한 연구)

  • Y.H. Kim;Y.J. Park;H.R. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.61-73
    • /
    • 1993
  • In the present study, sloshing problem is analyzed by the application of Finite Difference Method. SOLA-SURF scheme is applied to the analysis of fluid motion considering free surface. Especially, the concept of impact buffer zone is introduced for the prediction of more realistic impact pressure on tank. Numerical computation is carried out for the typical three models, and the computed results show good agreement with experimental data. The computation is also performed for 300,000 tons VLCC as a real-ship application. From the present study, it is proved that this numerical technique is quite practical to the prediction of sloshing impact pressure.

  • PDF

The Application of Buffers in Construction Planning and Scheduling (건축공사 공정관리에서 버퍼(buffer)의 활용방안)

  • Suh Sang-Wook;Yoon You-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.257-260
    • /
    • 2001
  • Buffers, on which much research is being done, are being used as a means to alleviate impacts in processes. Impacts occur from variation which is caused by uncertainty. Current buffers just accept variation as it comes and have just been used as a means to reduce impact. The purpose of this research try to understand the assorted variations which arise from limited resources and information and then we present a division of buffers as the way to overcome these variations. Through the process of dividing buffers into screening buffers, pulling buffers, shielding buffers, and working buffers, we try to make the process more compact, eliminate unnecessary reduction, speed up the decision making process by excluding excessive information, and improve the reliability of work.

  • PDF

A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구)

  • Kim K. H.;Hwang K. M.;Jin T. E.
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

The Trend of Mitigation Devices for Insensitive Munition of Solid Rocket Motor (고체 추진기관 둔감화를 위한 완화장치의 연구 동향)

  • Ryu Byung-Tae;Yoon Ki-Eun;Jung Jin-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Insensitive Munitions(IM) of solid propulsion system are defined as munitions that fulfil the performance and operational requirements, but will minimize the violence of a reaction when subjected to inadvertant stimuli. It should be clear that the reaction violence of rocket motor subjected to thermal stimuli can be mitigated by reducing confinement prior to propellant reaction. Devices designed to do this by venting the rocket motor case are commonly referred to as mitigation devices. The objective of this paper is to introduce the technical information related to the pyrotechnic mitigation devices for insensitive munition of solid rocket motor.

  • PDF

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.

New Nurse's on Reality Shock and Organizational Commitment Convergence Study (신규간호사의 현실충격, 조직몰입 융복합연구)

  • Kim, Won Soon
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.377-386
    • /
    • 2020
  • This study aims to examine the effect of coaching leadership on reality shock and organizational commitment of new nurses in general hospitals. Data were analyzed through the SPSS/WIN 21.0 program using descriptive statistics, t-test, ANOVA, Pearson's correlation coefficients, and Standard Multiple Regression. Regression analysis proved relevance of the organizational commitment model (F=6.17, p<.001), and coaching leadership had 39.2% explanatory power on reality shock. The results of the study showed that coaching leadership lowers reality shock and boosts organizational commitment of new nurses. This study provides necessary background knowledge of human and material resource management to alleviate the reality shock and help vocational adaptation to reduce turnover rates of new nurses. Hence, with such results, this study aims to provide basic information on future coaching leadership research and coaching leader defense program developments.

Protector Design and Shock Analysis for a Launch-Reconnaissance Robot (발사형 정찰로봇을 위한 보호체 설계 및 충격해석)

  • Kang, Bong-Soo;Park, Moon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.971-976
    • /
    • 2011
  • This paper presents the design concepts of a protector for a launch-reconnaissance robot that is to be deployed for data-collection in hazardous regions. The protector protects the reconnaissance robot inside from shock induced during the process of launch, flight, and landing. Since the outer shells of the protector are automatically opened wide by the unlocking mechanism during the landing stage, the reconnaissance robot can easily exit the protector and move around to carry out its mission. We carefully simulated a finite-element model of the protector with the robot and compared the results with the actual dynamic behavior of the system. Shock- response tests using a droptable showed that the proposed protector filled with silicon material successfully attenuated external shock.

Development of KAU Mechanical Lunar Simulants and Drop Test of Lunar Landing Gears (KAU 기계적 달 복제토 개발 및 달착륙선 착륙장치의 낙하시험)

  • Yoo, Seok-Ho;Kim, Hyun-Duk;Lim, Jae Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1037-1044
    • /
    • 2014
  • In this study, we designed a drop test system considering lunar surface environment and tested landing gear of experimental lunar lander. The lunar lander would be landed at soil place for soft landing. When the lunar lander touches down, the acceleration of the lander is largely affected by mechanical characteristics of the lunar soil. Accordingly, a drop test using lunar soil is needed to verify the performance of the lunar landing gear. Because the lunar soil is not available generally, we developed a lunar simulant KAUMLS(Korea Aerospace University Mechanical Luna Simulant) based on mechanical properties of the lunar soil of NASA's LUNA PROJECT. In addition, drop tests on steel plate and dry sand are performed to evaluate impact characteristics by the surface environment.