• Title/Summary/Keyword: 충격압력 발생기

Search Result 50, Processing Time 0.025 seconds

Computation of a Two-dimensional Nozzle Flow with the Variation of Pressure and Length Ratios (수치계산에 의한 2차원 초음속 노즐에서 압력비와 길이비에 따른 흐름 특성)

  • Kwon, Soon-Duk;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • The Navier-Stokes equations are numerically solved for a two-dimensional small nozzle with the area ratio of 1.8 between the throat and the exit. The shock structures are verified inside the nozzle and near the exit varying with the pressure ratio and the length of the diverging part, respectively. Especially the irregular patterns in the pressure distribution near the throat are analyzed based on the geometric characteristics. It is found that there are similar phenomena in the shock wave structure between the pressure ratio and the length changes. Also there exists a normal shock just between two different oblique shocks crossing each other in special cases.

An Experimental Study of Supersonic Underexpanded Jet Impinging on a Perpendicular Flat Plate (평판 위에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Impinging jets are observed when exhaust gases from missiles or V/STOL aircrafts impinge on the ground, flame deflector, ship deck, etc. The flow shows different patterns according to the nozzle geometry, nozzle-to-plate distance, and plate angle, for example. This paper describes experimental works on the phenomena (pressure distribution, occurrence of stagnation bubble, and so on.) when underexpanded supersonic jets impinge on a perpendicular flat plate using a supersonic cold-flow system, and compares the results with those obtained using a shock tunnel. The flow characteristics for the supersonic cold-flow system were also investigated. Surface pressure distribution of supersonic cold-flow system differed from that of shock tunnel because of water and temperature in the low-pressure chamber. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF

A Study of the Influence of the Injection Location of Supersonic Sweeping Jet for the Control of Shock-Induced Separation (경사충격파 박리유동 제어를 위한 초음속 진동제트 분출위치의 영향성 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.747-754
    • /
    • 2022
  • An experimental study was carried out to control a shock-induced boundary layer separation by utilizing the supersonic sweeping jet from the fluidic oscillator. High-speed schlieren, surface flow visualization, wall pressure measurement and precise Pitot tube measurement were applied to observe the influences of the location and the supply pressure of the fluidic oscillator on the characteristics of the oblique-shock-induced boundary layer separation. The characteristics of the separation control by the present supersonic fluidic oscillator was quantitatively analyzed by comparing with a conventional control method utilizing an air-jet vortex generator.

Development of Impact-sliding wear model for Steam Generator Tubes (증기발생기 전열관 충격 미끄럼 마모 모델 개발)

  • Daeyeop Kwon;Heejae Shin;Young-Jin Oh;Chi Bum Bahn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • The phenomenon of fretting wear due to the flow-induced vibration in steam generator (SG) tube is a significant degradation mechanism in nuclear power plants. Fretting wear in SG tube is primarily attributed to the friction and impact forces between the SG tube and the tube support structures, experienced during nuclear power plants operation. While the Archard model has generally been used for the prediction of fretting wear in SG tube, it is limited by its linear nature. In this study, we introduced an "Impact Shear Work-rate" (ISW) model, which takes into account the combined effects of impact and sliding. The ISW model was evaluated using existing experimental data on fretting wear in SG tube and was compared against the Archard model. The prediction results using the ISW model were more accurate than those using the Archard model, particularly for impact forces.

Study of Base DRAG Prediction With Chamber Pressure at Super-Sonic Flow (초음속 유동에서 챔버 압력에 따른 기저항력 변화 예측)

  • Kim, Duk-Min;Nam, Junyeop;Lee, Hyoung Jin;Noh, Kyung-Ho;Lee, Daeyeon;Kang, Dong-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.849-859
    • /
    • 2020
  • The semi-empirical equation and commercial computational tool were used to predict the base drag of a guided missile with free-stream Mach numbers and chamber pressures, and the results were generally agree each other. Differences in flow characteristics and base drags were observed with over/under expansion conditions by the nozzle. Under the over-expansion condition, the base pressure decreased as the expansion fan was generated at upper region of the base, and base pressure decreased further with increasing free-stream Mach number as the expansion becomes strong. Under the under-expansion conditions, a shock wave was generated around the base by the influence of the nozzle flow, which increased the base pressure, and the effect increased as the chamber pressure increased. Under the same chamber pressure condition, as the free-stream Mach number increases, the characteristic that the base pressure decreases as the shock wave generated at the base moves downstream was observed.

Aerodynamic Characteristics of Supersonic Jets Impinging on $60^{\cire}$ Wedge (꼭지각이 $60^{\cire}$인 쐐기에 충돌하는 초음속 제트의 공기역학적 특성)

  • 박종호;이택상;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Supersonic jets impinging on $60^{\cire}$ wedge were investigated to obtain fundamental design data for jet deflector It was of interest to study flow phenomena such as shock interaction and separation induced by shear layer. Experiments using supersonic cold flow system were conducted for Schlieren flow visualization and measurement of surface pressure. Numerical results were compared with the experimental results. The major parameters are underexpansion ratio, distance from nozzle to apex and design Mach number. Flow conditions were obtained for the wedge shock to attach on or detach from the wedge. The dominant feature of flow-field is shock pattern induced by the Interaction between the wedge shock and the barrel shock.

Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle (초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구)

  • Nam, Jong-Soon;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Hysteresis phenomena in fluid flow systems are frequently encountered in many industrial and engineering applications and mainly appear during the transient processes of change of the pressure ratio. Shock-containing flow field in supersonic nozzles is typically subject to such hysteresis phenomena, but associated flow physics is not yet understood well. In the present study, experimental work has been carried out to investigate supersonic nozzle flows during the transient processes of change in the nozzle pressure ratio. Time-dependent surface wall pressures were measured by a multiple of pressure transducers and the flow field was visualized using a nano-spark Schlieren optical method. The results obtained show that the hysteresis phenomenon is strongly dependent on the nozzle geometry as well as the time scale of the change of pressure ratio.

중이온가속기 진공도 요구조건에 대한 고찰

  • In, Sang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.100.1-100.1
    • /
    • 2015
  • 중이온가속기에서 잔류기체 분자와 가속 이온의 충돌이 발생하면 이온빔 전류의 손실을 야기하는 직접적인 효과 외에 잔류 기체분자 중에서 전리된 이온들이 반발력에 의해 용기 벽에 부딪힐 때 표면에 흡착되어 있던 기체분자들을 충격탈리(stimulated desorption)시킨다. 더 심각한 경우는 산란된 고속 이온이 용기 벽과 충돌하면서 핵반응을 일으켜 방사화 시키거나 벽에서 다량의 기체를 방출시키는 것이다. 최악의 경우에는 고속이온의 에너지에 의해 용기벽이나 부품들이 열적인 손상을 입을 수도 있다. 현재 설계 및 연구개발이 진행중인 기초과학원(IBS) RISP (Rare Isotope Science Project)의 RAON 중이온가속기는 입사기에서 실험영역까지 각 부분의 진공도 조건이 일반적으로 10-8~10-9 mbar 대에 있어서 이온빔 전류의 손실이나 전리 이온들에 의한 충격탈리는 무시할 수도 있지만 고속이온의 기체방출 수율이 ~104 정도로 높은 것을 감안할 때 고속이온의 충격탈리에 의한 압력 증가가 감내할 수준인지 검토할 필요가 있다. 압력증가는 추가적인 손실을 유발하고 이것은 다시 압력을 상승시키는 진공 불안정성(vacuum instability)을 야기할 수 있다는 축면에서 조심하는 것이 좋다고 판단된다. 고속 중이온과 잔류기체 분자와의 충돌에서 이온이 손실되는 반응에는 쿨롬(coulomb) 산란과 전하교환(charge exchange)이 있는데 전자는 후자에 비해 일반적으로 1/10000 가까이 낮아서 무시할 수 있고, 전자 포획(electron capture) 또는 전자 손실(electron loss, 이온의 전리에 해당)로 대별되는 전하교환 반응이 이온 손실을 주도하는 것으로 알려져 있다. 이 연구에서는 다양한 전하교환 반응 단면적을 아우르는 비례칙(scaling law)을 사용하여 대표적인 중이온인 U33+ 및 U79+의 손실 및 잔류 기체의 전리율을 계산하고 충격탈리에 의한 표면방출 및 압력상승을 일차적으로 고려하여 진공도 조건의 타당성을 입증하려고 한다.

  • PDF

Mathematical separation behavior modeling for the split-type separation device (스플릿 타입 분리장치의 수학적 동적 분리 거동 모델링)

  • Hwang, Dae-Hyun;Han, Jae-Hung;Lee, Yeungjo;Kim, Dongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.423-425
    • /
    • 2017
  • When many space launchers and rockets need to be separated, the pyrotechnic separators have been widely used because of their high reliability and high energy generation. However, intensive pyroshock and debris from the high-explosive type separator may cause fatal damage to the equipment inside of the space launchers or rockets. To solve this problem, a pressure-cartridge type low-impact separator has been developed. In this study, one of the low-impact separators, the split-type pyrolock, was used. We established a mathematical model for the split-type pyrolock that simulates the state of combustion gas and the separation behavior of four independent internal components and verified the mathematical model through comparing with experiment results.

  • PDF