• Title/Summary/Keyword: 충격쇄파력

Search Result 7, Processing Time 0.023 seconds

Dynamic Behavior of Cylindrical Pile Subjected to Impulsive (衝擊碎波力의 작용에 의한 圓形파일의 動的擧動)

  • 전인식;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 1999
  • The Morison's formula has been commonly used in the determination of wave forces of sinusoidal waves acting on coastal or ocean structures of pile-supported type. In the case that plunging breakers are incident, the structures are subjected to impulsive breaking wave forces which are normally much larger than the Morison's. However, the impulsive breaking wave forces act in a very short time, and hence a dynamic structural analysis should be done to determine whether or not to include the forces in the design force items. In the present study, numerical methods for calculating the dynamic response of a vertically located cylindrical pile are developed. Static and dynamic displacements are then compared through several example analyses varying the structural properties of pile.

  • PDF

쇄파파력 결정을 위한 수치해석

  • 심재설;전인식;이홍식
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.100-105
    • /
    • 1998
  • 해양구조물의 연직 원형파일에 작용하는 파력은 주로 항력과 관성력의 합으로 표시되는 Morison 식을 이용하여 결정하여 왔다. 그러나 Morison 식은 대칭형상을 유지하며 비교적 완만히 변화하는 파에 대해서 적용이 가능하다. 구조물 부재에 쇄파가 작용할 경우, 쇄파파력은 항력과 관성력에 추가하여 강한 충격쇄파력을 포함하게 된다. 본 연구는 임의 이차원 경사해빈에서 경계요소법을 적용하여 쇄파 내부점들의 수립자 속도 및 가속도를 계산하고, 이들을 이용하여 쇄파에 의한 쇄파파력을 계산하기 위한 모델기법을 수립한다.(중략)

  • PDF

Numerical Study of Breaking Wave Forces Acting on Vertical Cylindrical Piles (鉛直 원형파일에 작용하는 碎波波力의 수치해석)

  • 심재설;전인식;이홍식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.100-108
    • /
    • 1998
  • Morison formula has been used in the determination of wave forces acting on vertical cylindrical piles of ocean structures. The formula, however, can be applied to mildly varying varying incident waves with symmetrical shapes. The breaking waves impinge on structures with very high impact forces, which completely differ from the inertia and drag forces of the Morison formula in both magnitudes and characteristics. In the present study, a boundary element method is applied to determine the water particle velocity and acceleration under the breaking waves. A numerical model is then developed to determine breaking wave forces utilizing those water particle kinematics. The results of the model is then developed to determine breaking wave forces utilizing those water particle kinematics. The results of the model agree well with existing experimental data, giving maximal wave forces 3 times and maximal moments 5 times larger than the Morison formula does.

  • PDF

Structural Analysis of a Breakwater in Wave and Seismic Loads (파랑하중과 지진하중하의 방파제 구조해석)

  • Cho, Kyu-Nam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • In this paper, a guideline for designing breakwater in wave loads and in seismic loads is proposed. A simple model structure in breaking wave zone is examined using Morison equation in consideration with the effect of an impact load, for evaluation of the wave loads. As the impact load effect is not significant, pressure distributions according to Goda are applied for evaluation of wave loads on breakwater. Structural behavior of breakwater in wave loads can be obtained using the Goda method, as well. For seismic analysis, Ofunato and Hachinohe models, as well as an artificial seismic acceleration loads model, are adopted. Soil-structure interaction analysis is carried out to find the seismic load effect. It is found that, in certain cases, structural deformation in wave loads is in the same level as deformation that in seismic loads. Thus, it is our recommendation that these two loads are considered at the same level in breakwater design.

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄파력에 관한 연구)

  • 조효제;구자삼;이상길
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.220-226
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF