• Title/Summary/Keyword: 출구 유량

Search Result 262, Processing Time 0.027 seconds

Design of Large Capacity Clean Air Heater (대용량 청정 공기 가열 장치 설계)

  • Kim, Jeong-Woo;Jung, Kwang-Soo;Jeon, Min-Joon;Lee, Kyu-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.115-118
    • /
    • 2010
  • 2 Types of heater (Vitiated Type, Clean Air Type) in order to increase the temperature for a test are used for industry. In this report, large capacity clean air type heater was designed. Heater capacity and LNG consumption rate can be calculated by the air mass flow and heater inlet/outlet temperature. The heater is composed by Burner, Furnace, Heat Exchanger, and Stack. The hot air from the burner and cold air from the tube inlet exchange their heat indirectly in the heat exchanger, so the desired temperature can be achieved at the exit of the tube.

  • PDF

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

Behavioral Analysis of Re-scaled Width Function by Interaction between Overland and Stream network (지면과 하천망의 상호작용에 따른 재조정된 폭 함수의 거동해석)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.296-296
    • /
    • 2011
  • 유역의 폭 함수는 출구를 기준으로 동일한 거리에 위치한 link의 개수로 정의된다. 하천망을 구성하는 기본 성분 중의 하나인 link는 동일한 유역의 경우 유사한 평균길이와 직접배수면적을 갖는 것으로 알려져 있다. 이는 폭 함수가 흐름방향 축을 따라 정의되는 지점별 배수면적의 기여도와 동일함을 의미하는 것으로 유역의 형태학적 특성에 따라 조직되는 초기유량분포함수로 해석할 수 있다. 따라서 DEM을 기반으로 원점으로부터 동일한 거리에 위치한 pixel의 수를 계량할 경우 비교적 쉽게 유역의 폭 함수를 유도할 수 있게 된다. 또한 물 입자의 동적특성에 따라 폭 함수의 흐름방향 축을 시간 축으로 재조정할 경우 대상 유역에 대한 수문학적 응답함수로의 변환이 가능해 진다. 본 연구에서는 보청천 시험유역의 탄부수위표 지점을 출구로 하여 DEM으로부터 폭 함수를 작성하고 지면과 하천유속의 차에 따른 운동학적 확산효과만을 고려하여 재조정된 폭 함수를 다음 그림과 같이 유도하여 보았다. Figs 1, 2에서 주목되는 사항은 왜곡도의 반전으로 부왜도의 형태를 갖던 폭 함수가 정왜도의 형태를 갖는 수문학적 응답함수(순간단위도)로 변환되어 가는 과정을 시각적으로 확인할 수 있다. 이는 Mod-Clark 방법에 따른 준분포형 순간단위도의 유도과정과 유사한 것으로 이에 따라 선형저수지의 저류효과는 지면과 하천유속의 차에 따른 운동학적 확산효과와 동일한 거동을 보일 수 있음이 추론된다.

  • PDF

Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor (코안다 노즐에서 중심 축소관 유무에 따른 유입량 특성)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used a coanda nozzle for the exhaust gas recirculation in a MILD combustor. A numerical analysis was accomplished to elucidate the effect of exhaust gas entrainment toward the furnace with or without a coaxial contractor. The result of the present CFD analysis showed that the entrainment mass flow rate without a coaxial contractor had 18% larger than that with a coaxial contractor when the mixed gas outlet pressure was ambient pressure. On the other hand, if the outlet pressure increased, the mass flow rate with a contractor was larger than that without a contractor. It could be analysed by the entrainment driving force composed with the nozzle throat pressure, inlet and outlet pressures and flow cross sectional area.

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

Design of a Water level Gauging Station Network in Flood Forecasting Warning System: Case Citarum River in Indonesa (홍수예경보구축을 위한 수위관측망 설계:인도네시아 찌따룸강사례)

  • Lee, Sung soo;PI, Wan Seop;Jun, Kye Won;Kim, Gi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.301-301
    • /
    • 2019
  • 수위 관측 지점의 선정은 관측 기록의 목적, 지점의 접근성 등에 의해 결정되며, 수위는 유량을 계산하기 위한 필수 자료이므로 수위 관측 지점의 위치를 선정하는데 있어 수리조건은 매우 중요한 요소이다. 이에 수위관측소(WLS, Water Level Station)는 홍수예경보, 수해방지 등의 치수계획과 하천운영, 용수공급 등의 이수계획 및 생태계 보전을 위한 수질관리계획 등의 목적을 달성할 수 있는 지점에 WMO에서 제시한 수위관측소의 최소 밀도를 고려하여 설치된다. 한국의 경우 치수측면에서 홍수예경보시스템의 홍수예보 대상지점과 홍수유출 계산지점을 가장 중요한 요소로 판단한다. 이에 홍수통제소에서 운영하는 홍수예보 프로그램에 적절한 수위관측망을 고려하기 위하여 프로그램에서 사용되고 있는 소유역 출구점 또는 합류점을 모두 수위관측소 위치로 포함시키고 있다. 인도네시아 Citarum강 홍수예경보 모형의 실행 및 검정을 위해서는 주요 지류의 출구마다 수위관측소를 설치하는 것이 바람직하나, 수위관측소의 설치 및 운영에는 많은 비용이 소요되기 때문에 주어진 예산을 고려해야 하며, 홍수예보를 실시하는 이유는 홍수로 인한 피해를 경감시키기 위한 것이기 때문에 인구와 홍수피해 잠재성이 높은 지점을 위주로 설치를 계획하여야 한다. 사업 대상지역인 Citarum강에서 BBWSC가 운영 관리하는 WLS는 29개소이며, 이 중 대상지역인 Upper Citarum Basin(UCRB)에는 20개소의 WLS가 운영되고 있다. 본 설계에서는 $300km^2$당 1개소의 수위관측소를 설치하는 것을 기준으로 설정하여 홍수예경보가 필요한 WLS 8개소를 도출하였으며, 소유역의 출구점 또는 합류점 등을 고려하여 수위관측소 위치를 결정하였다. 또한 UCRB의 과거 홍수피해상황, 과거 홍수범람실적, 홍수범람도 등을 조사하였으며, 실시간 자료 전송을 위한 통신 환경, 차량의 접근 용이성 및 하천구역 대표성 등을 고려하여 홍수예경보 구축을 위한 최적의 수위관측망을 설계하였다.

  • PDF

Design Factor Analysis of Aerospike Pintle Nozzle for Increasing Thrust in Off-Design (탈설계 조건에서 추력 증대를 위한 에어로 스파이크 핀틀 노즐의 설계인자 분석 연구)

  • Kim, Jeongjin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • A design factor analysis was conducted to reduce the thrust reduction in the off-design, due to the driving of the aerospike pintle nozzle. The close (NPR 100) as well as the open (NPR 11) stroke were fixed, as under-expansion conditions. The pintle contour, pintle head radius (R), cowl angle (θ), and cowl exit length (L) were selected as design factors. The change in thrust was analyzed, using a verified numerical analysis technique. First, the pintle head radius and the length of the cowl exit had little influence on the thrust. The cowl angle changed the mass flow rate by affecting the effective nozzle throat area, and created a reverse pressure gradient at the cowl exit. As a result of applying the dual aerospike contour, it was confirmed that the thrust in the design-off increased by approximately 1.2%, compared to the reference case and by approximately 3.4% compared to the worst case.

Reduced-scale Model Experiment for Examination of Natural Vent and Fire Curtain Effects in Fire of Theater Stage (공연장 무대부 화재 시 자연배출구 및 방화막 영향 검토를 위한 축소모형 실험)

  • Baek, Seon A;Yang, Ji Hyun;Jeong, Chan Seok;Lee, Chi Young;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.41-49
    • /
    • 2019
  • In the present experimental study, based on a real-scale theater, a 1/14 reduced-scale model was constructed, and the effects of natural vent and fire curtain in fire of a theater stage were investigated. The case without fire curtain under the opened natural vent showed lower temperatures in the stage, whereas the case with fire curtain under the opened natural vent showed lower temperatures in the auditorium. On the other hand, through analyzing the starting time of the temperature rise at the point near the proscenium opening in the auditorium, it was found that the opened natural vent condition can delay the starting time of smoke spread from the stage to the auditorium and suppress the temperature rise in the auditorium. Under the present experimental conditions, the fire curtain installation did not affect significantly the velocity and mass flow rate of the outflow through the natural vent of the stage, which might be due to openings in the stage. The present results can be used to examine the effects of natural vent and fire curtain in a real-scale fire of a theater and to check the accuracy of the numerical simulation code.

Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water - (지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.128-137
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger by using the parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. 0247164, offered by Korean Intellectual property Office). The trial manufactures were made from Aloo-heat which was 600mm, 700mm length respectively, and It were welded to the end "U" type in order to direct flow of the underground water. The performance test was carried out under the condition of open space and room temperature with the change of flow rate of the underground water and air. The results are as follows. 1. The trial manufactures had convection heat value from 33 to 156 W/m2℃, and It was coincided with design assumption. 2. The amount of energy transfer was increased with the increment of the area of heat transfer, the air flow, the gap of temperature inlet & outlet the underground water and the air. 3. The heat value was 6,825W when the air flow was 6,000m3/h and the gap of temperature between inlet and outlet of the underground water was 6℃, and It dropped from 25.8℃ to 23.2℃(-2.6℃ difference). The convection heat value was 88.5W/m2℃. 4. The heat value was 2.625W when the air flow was 4,000m3/h and the gap of temperature between inlet and outlet the underground water was 2℃, and It dropped from 27℃ to 22.5℃(-4.5℃ difference). The convection heat value was 33.6W/m2℃. 5. Correlation values(R2) of the testing heat values of the trial manufacture type I, II, and III were 0.9141, 0.8935, and 0.9323 respectively, and correlation values(R2) of the amount of the air flow 6,000m3/h, 5,000m3/h, 4,000m3/h were 0.9513, 0.9414, and 0.9003 respectively.

Identification of unit hydrograph peak behavior according to changes in precipitation scale in a virtual watershed (가상 유역의 강수 규모 변화에 따른 단위유량도 첨두치의 거동 규명)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.655-665
    • /
    • 2023
  • In this study, unit hydrographs are calculated when precipitations of 10 scales instantaneously occurs in a virtual watershed with a constant slope and roughness. Then, the relationship between the peak flow rate and the peak occurrence time of the unit hydrograph was calculated for the precipitation scale, respectively. At this time, the virtual watershed simplified with a rhombic shape, a constant slope, and a flow condition with a certain roughness was applied instead of a natural watershed in order to understand the effect the precipitation scale has on the peak value of the unit hydrograph. And it was assumed that the precipitation in the basin was effective rainfall and the runoff was direct runoff, and the runoff flowed in a straight, uniform flow from the drop point to the outlet. The relationship between the peak flow and the peak occurrence time of the unit hydrograph was calculated in the case of 10 types of precipitation scales of 10 mm, 40 mm, 90 mm, 160 mm, 250 mm, 360 mm, 640 mm, 1,000 mm, 1,210 mm, and 1,690 mm of effective precipitation. A noteworthy achievement of this study is that, even without the storage effect of the watershed, as the scale of precipitation increases, the depth of runoff increases, so the flow rate in the watershed increases and the distance per unit time increases, so the peak flow rate increases and the peak occurrence time increases. This is a nonlinear characteristic of watershed runoff.