• Title/Summary/Keyword: 축 타입 구동

Search Result 6, Processing Time 0.024 seconds

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

A Study on Actuator Design for SA Compensation (구면 수차 보상을 위한 엑츄에이터 설계에 대한 연구)

  • 이성훈;박관우;김진아;최인호;김진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.346-350
    • /
    • 2004
  • In Blu-ray(BD) optical system, as a short laser wavelength of laser diode and thin cover layer thickness of' disc, the proper adjustment of spherical aberration should be performed. Considering thin cover layer' thickness and tolerance variation of disc in BD optical system, spherical aberration in BD format is mort: serious than CDㆍDVD format Especially, in dual-layer disc, to compensate the aberration at each layer, optical component should be moved finely in the way of optical path. In this study, 1 -axis moving actuator was introduced as the method of compensating the spherical aberration, and the mechanism of the system was described. Finally, its effect on optical system will be mentioned.

  • PDF

Research of Upper limb Torque on the Hand Bike by Degree of Seat using Cybex (싸이벡스를 이용한 핸드바이크 시트 각도의 상지 회전력에 관한 연구)

  • Kim, Dong-Ok;You, Yeon-Ho;Rhee, Kun-Min
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.287-294
    • /
    • 2016
  • Based on upper limb torque by different angles of a back, distance between crank axis and chest and angles of hand-grips, this research is to develop variable hand bikes. By doing so, it is to offer guidance for its design. For this research three normal persons took part in the experiment. Results are as follows. First, upper limb torque was found to be the highest at 50 degree of a back and muscle endurance was shown to be the highest at 80 degree of a back. It means that as a back of a chair gets lower the speed and efficiency becomes better, which contradicts the subjective fact that K-type hand bikes would show the highest speed. Second, among types of grips of hand bikes 45 degree ones have been shown to be the ones with the highest torque. This is due to proper distribution of power of joints in arms, elbows, and shoulders. Third, in case of distance of 45cm between crank axis and chest, it has shown the most efficient torque. This is because of the effect of gravity and exhaustion when handling.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.