• Title/Summary/Keyword: 축 균형잡기

Search Result 3, Processing Time 0.019 seconds

The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery (진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교평가)

  • Oh, Seung-Tae;Yoo, Mu-Sang;Bong, Suk-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.314-320
    • /
    • 2014
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external keyphasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

  • PDF

The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery (진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교 평가)

  • Oh, Seung-Tae;Yoo, Mu-Sang;Bong, Suk-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2015
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external KeyPhasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

A DSP-based Controller for a Small Humanoid Robot (DSP를 사용한 소형 인간형 로봇의 제어기)

  • Cho Jeong-San;Sung Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.191-197
    • /
    • 2005
  • Biped walking is the main feature of a humanoid robot. In a biped walking robot, there are many actuators to be controlled and many sensors to be interfaced. In this paper, we propose a DSP-based controller for a miniature biped walking robot with 21 RC servo motors. The proposed controller has a hierarchical structure; a host PC, a DSP-based main controller, and an auxiliary controller with an FPGA chip. The host PC generates and transmits the robot walking data for given walking parameters such as stride, walking period, etc. The main controller implemented with a TMS320LF2407A controls 21 RC servo motors via the auxiliary controller. We also perform some experiments for balancing motion and walking on a slope terrain with interfacing a 2-axis acceleration sensor and a TMS320LF2407A.

  • PDF