• Title/Summary/Keyword: 축 궤적

Search Result 91, Processing Time 0.026 seconds

Off-Line Programming System of SCARA Robot (스카라로봇을 위한 오프라인 프로그래밍 시스템)

  • Jung, C. W.;Son, K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.588-592
    • /
    • 1993
  • 본 연구에서는 로봇의 교시, 궤적계획, 충돌, 로봇동작, 제어알고리즘 등의 평가에 유용하게 사용할 수 있는 다기능 오프라인 프로그래밍 시스템인 POLPS(Pusan_national_university's Off-Line Programming System) 를 개발하였다. POLPS은 4축 스카라형 FARA 로봇을 대상으로 개발되었고, 편리한 방법으로 교시작업을 수행할 수 있으며, 교시 내용에 따라 궤적계획을 수행한 후 로봇을 동작시켜 충돌을 회피하는 동적 시뮬레이션을 수행할 수 있다. 제안된 여러 제어알고리즘 중에서 주어진 작업에 적합한 제어알고리즘을 효율적으로 선정하기 위한 성능의 비교와 평가 기능을 갖추고 있는 것이 주요한 특징이다. 또한 시각위치변경, 온선. 온면제거 및 음영처리, 고속 애니메이션, 환경구성, 인터프리터 명령어 등의 다양한 기능으로 편리하게 사용할 수 있다.

  • PDF

A New Planning Algorithm of Weaving Trajectory Using Bezier Spline (Bezier Spline을 이용한 새로운 Weaving Motion 궤적 생성 알고리즘)

  • 김대영;김재량;정원지;서영교;홍형표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1760-1763
    • /
    • 2003
  • In this paper, we propose a new weaving trajectory algorithm for the are welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms rising Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. The algorithm has been implemented on to the industrial manipulator of DR6 so as to show its real possibility. Through simulations and real implementations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning and can reduce the processing time because it needs one-half calculation compared to the conventional algorithm using Catmull-Rom curve.

  • PDF

Position control of robot using two moving axis (2개의 모터축에 연결된 로봇의 팔 위치 제어)

  • Park, Seong-Wook;Jung, Kwang-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2403-2405
    • /
    • 2004
  • 본 논문에서는 회전과 무게이동을 할 수 있는 모터를 가진 로봇의 위치 제어와 로봇의 궤적과 구조식에 관해 연구를 수행한다. 로봇의 끝단의 위치를 제어 할 수 있는 스윙 모터의 각과 리프트 모터의 각도를 구하는 과정과 연속움직임을 통한 로봇의 움직임을 관찰한다. 예제를 통해 제어 방법의 유용성과 실용성을 검증하고자 한다.

  • PDF

A Study on the Mathematical Modelling of Cuban-8 Type Horizontal Axis Wind Turbine (Cuban-8형 수평축 풍력터빈의 수학적 모델링에 관한 연구)

  • Hwang, Chang-Su;Cho, Hwan-Kee;Chung, Hyung-Suk
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.36-44
    • /
    • 2008
  • This paper discusses about the mathematical modelling of a new conceptual shape of horizontal axis wind turbine. The geometrical characteristic of wind turbine is studied for the variation of azimuthal angles and elevation angles. The projecting trajectories of Cuban-8 blade due to rotation are analyzed on the each plane in the Cartesian coordinate system. Trajectories show several interesting graphical patterns since the geometrical shape is complicated with the rotational motion of two twisted circumferential blades with elevation angles.

  • PDF

Development of CAM system for 5-Axis NC machining of sculptured surfaces (자유곡면의 5축 NC 가공을 위한 CAM 시스템 개발)

  • Jun, Cha-Soo;Park, Se-Hyung;Jun, Yong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Developed in this research is a CAM system for 5-axis NC Machining of sculptured surfaces. We identify problems in generating 5-axis NC data and propose methods of overcoming them. Issues discussed in this paper are: kinematic modelling of NC machines; determination of cutter position (location and orientation); check of machine work-range; linear trajectory plann- ing ; calculation of feedrate number. The proposed system has been implemented in FORTRAN77 on the Personal IRIS EWS, and it also constitutes a module of the CAD/CAM system 'CASSET' developed in KIST CAD/CAM lab.

  • PDF

Temporal Filter for Image Data Compression (영상 데이터 압축을 위한 Temporal Filter의 구성)

  • 김종훈;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1645-1654
    • /
    • 1993
  • Unlike a noise removal recursive temporal filter, this paper presents a temporal filter which improves visual quality and data compression efficiency. In general, for the temporal band-limitation, temporal aliasing should be considered. Since most of a video signal has temporally aliased components, it is desirable to consider them. From a signal processing point of view, it is impossible to realize the filtering not afeced by the aliasings. However, in this paper, efficient filtering with de-aliasing characteristics is proposed. Considering the location of a video signal, temporal filtering can be accomplished by the spatial filtering along the motion vector trajectory (Motion Adaptive Spatial Filter). This filtered result dose not include the aliasings. Besides the efficient band-limitation, temporal noise is also reduced. For the evaluation of the MASF, its realization and filtering characteristics will be discussed in ditail.

  • PDF

A Study on Focus Position Control of Reflector Using Fuzzy Controller (퍼지제어기를 이용한 반사경의 초점 위치제어에 관한 연구)

  • Jeong, Hoi-Seong;Kim, Jun-Su;Kim, Hye-Ran;Kim, Gwan-Hyung;Lee, Hyung-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.645-652
    • /
    • 2011
  • The present study investigated the tracking system of a reflector to trace the movement of sun. The system was designed to minimize the error between the vertical vector of reflector and the position of sun. The proposed system was able to collect the sun lights at a point as a useful source of light energy and transmit the collected light to a remote area through optical fibers. Also the study successfully solved the controller design problem due to the complexity of modeling of the sun tracking system using a fuzzy logic controller which mimics human reasoning.

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.

A Study on Horizontal Moment Flight Coefficient Estimation of a Flying Disc Using Miniaturized Inertial Measurement Module (초소형 관성측정모듈을 이용한 플라잉디스크의 수평축 모멘트 미계수 추정 연구)

  • Son, Hyunjin;Lee, Ju Hwan;Lee, Young Jae;Sung, Sangkyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.385-392
    • /
    • 2018
  • This paper suggests a new method to estimate the roll and pitch damping moment coefficients of a flying disc through sensor data from the onboard IMU module. This method can be easily performed than wind tunnel or computational fluid dynamics methods because it estimates aerodynamic coefficients simply after accumulating the inertial data through several repeated flight experiments. Estimated coefficients are applied to a simulator which is based on the flight dynamics of a flying disc. Finally, the predicted flight trajectory is compared with the true position provided by GPS, which demonstrated the validity of the proposed estimation method.

Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling - (5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 -)

  • So, Bum-Sik;Jung, Yoong-Ho;Yun, Jae-Deuk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.