• Title/Summary/Keyword: 축응력

Search Result 545, Processing Time 0.023 seconds

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.

Aerodynamic and Structural Design of A High Efficiency Small Scale Composite Vertical Axis Wind Turbine Blade (복합재가 적용된 고효율 소형 수직축 풍력터빈 블레이드의 공력 설계 및 구조 설계에 관한 연구)

  • Gong, Chang-Duk;Lee, Ha-Seung;Kim, In-Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.758-765
    • /
    • 2011
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class blade design of vertical axis wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. For this wind turbine a high efficiency and low noise turbine blade was designed with the proposing aerodynamic design procedure, and a light composite structure blade. Structural analyses were performed using the Finite Element Method and fatigue life of the designed blade is estimated. Finally, in order to check its performance, the manufactured blade was tested by using truck and the results of test was good with respect to its analysis result.

Optimization of Gear Webs for Rotorcraft Engine Reduction Gear Train (회전익기용 엔진 감속 기어열의 웹 형상 최적화)

  • Kim, Jaeseung;Kim, Suchul;Sohn, Jonghyeon;Moon, Sanggon;Lee, Geunho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.953-960
    • /
    • 2020
  • This paper presents an optimization of gear web design used in a main gear train of an engine reduction gearbox for a rotorcraft. The optimization involves the minimization of a total weight, transmission error, misalignment, and face load distribution factor. In particular, three design variables such as a gear web thickness, location of rim-web connection, and location of shaft-web connection were set as design parameters. In the optimization process, web, rim and shaft of gears were converted from the 3D CAD geometry model to the finite element model, and then provided as input to the gear simulation program, MASTA. Lastly, NSGA-II optimization method was used to find the best combination of design parameters. As a result of the optimization, the total weight, transmission error, misalignment, face load distribution factor were all reduced, and the maximum stress was also shown to be a safe level, confirming that the overall gear performance was improved.

Experimental Study on the Development of a Seismic Reinforcement Method for Reinforced Concrete Columns using High-tensile Alloy Materials (고인장 합금재를 활용한 철근콘크리트 기둥의 내진보강공법 개발에 관한 실험적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.411-418
    • /
    • 2024
  • Purpose: This study aims to develop brand new bolt fastening type of seismic retrofit using high tensile alloy materials for existing reinforced concrete columns. Method: A T-type cross-sectional seismic retrofit made of SUS304 and SS275, and the high-tensile bolt of SCM435 was analyzed for the effect of material properties on seismic performance through bending test. Result: The experiment using SUS304 shows a 7% higher maximum strength and 22% higher yield strength and shows a higher compressive stress of 360MPa. In addition, the change in the neutral axis is also smaller. Conclusion: Seismic retrofit using SUS304 is considered to be better in terms of yield strength, tensile strength, neutral axis change, and ductility, and it is considered necessary to experiment with RC column real experiments in future studies.

Axial Stress Evaluation of Bundle Nails in Smart Construction (스마트 건설기반 번들네일의 축응력 평가)

  • Donghyuk Lee;Jaekoo Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.13-17
    • /
    • 2024
  • The general soil nailing method, which is currently used domestically and internationally to stabilize the slopes of sandy slopes, is to form a kind of gravity-type retaining wall by drilling the ground and grouting it with a single steel bar. This method can reduce construction costs, ease of construction, relative strength and displacement, and is highly efficient. The difference between grouting and rebar adhesion to the yield pullout force and the difference between the amount of deformation in relation to the same pullout resistance was analyzed through field tests to identify engineering excellence, and in terms of construction cost, the reduction effect was evaluated by analyzing the difference in the number of drillings and the impact on the overall construction cost, such as material cost, when the same strength constant is applied to the ground with the same resistance.

A Study on the Cutting Pattern Generation of the Membrane Structures Using Triangular Re-mesh (막 구조물의 삼각형 Re-mesh 패턴을 적용한 재단도 생성에 관한 연구)

  • Jeon, Jin-Hyung;Shon, Su-Deok;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.153-165
    • /
    • 2007
  • Flexible structure uses a material with strong axial stiffness and small bending stiffness as its major structural material so it is very sensitive to initial stiffness. Therefore, the self-formation process which accomplishes a form in the natural world is grasped and it is as well investigated and classified the type of modeling techniques which are available to find the shapes of soft structures. Accordingly, for analysis and design of flexible structure, three-step analysis such as shape analysis, stress-deformation analysis, cutting pattern generation and constructional analysis is required unlike the existing stiff structure. In this study, suggest that minimize the error of side curvatures by the triangle Re-mesh pattern and draw the cutting pattern generation.

  • PDF

A Study on Structural Durability due to the Configuration of Ripper at Excavator (굴착기에서의 리퍼의 형상에 따른 구조적 내구성 연구)

  • Kang, Min-Jae;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • In this study, two models due to the configuration of ripper at excavator are investigated by structural and fatigue analyses. The maximum stress and deformation are happened at the axis connected with the body of working device and the direct working part respectively. Model 1 is thought to have more structural durability than model 2. Fatigue life or damage in case of 'SAE bracket history' whose load change is most severest among non-uniform fatigue loads is shown to become most unstable. But life or damage in case of 'Sample history' whose load change is slowest among non-uniform fatigue loads is shown to become most stable. These study results can be effectively utilized with the design of ripper at excavator by anticipating and investigating prevention and durability against its fatigue damage.

Effective Strength of 3-Dimensional Concrete Strut (3차원 콘크리트 스트럿의 유효강도)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.403-413
    • /
    • 2014
  • For the reliable design of the structural concrete by the strut-tie model approaches of current design codes, the effective strengths of concrete struts must be determined with sufficient accuracy. Many values and equations for the effective strengths have been suggested until now. As those are for the two-dimensional concrete struts, however, it is inappropriate to employ them in the strut-tie model designs of three-dimensional structural concretes. In this study, an approach, that determines the effective strengths of three-dimensional concrete struts consistently and accurately by reflecting the state of 3-dimensional stresses, the 3-dimensional failure criteria of concrete, the degree of cracks (or tensile strains of reinforcing bars crossing the struts), the strut's longitudinal length, the deviation angle between strut orientation and compressive principal stress flow, compressive strength of concrete, and the degree of concrete confinement by reinforcing bars, is proposed. To examine the validity of the proposed approach, the ultimate strength analyses of 115 reinforced concrete pile caps tested to failure by previous investigators were conducted by the ACI 318-11's strut-tie model approach with the existing and proposed effective strengths of concrete struts.

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF

Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients (영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산)

  • Jang, Chang-Heui;Moon, Ho-Rim;Jeong, Ill-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.