• Title/Summary/Keyword: 축열물질

Search Result 95, Processing Time 0.03 seconds

Preparation of spherical shape of PCM by using sodium acetate trihydrate (Sodium Acetate Trihydrate를 이용한 구형의 PCM 입자의 제조)

  • Kim, Jong-Kuk;Jung, Kyeong-Taek;Shul, Yong-Gun;Kim, Dong-Hyung;Lee, Tae-Kyu
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.67-74
    • /
    • 1997
  • Spherical shape of phase change material(PCM) has been prepared by using sodium acetate trihydrate as a latent heat storage medium. Gelatin was used as an effective thickener to prevent undesirable phase separation. Sodium pyrophosphate decahydrate was used as nucleator to decrease the degree of supercooling in the thickened phase change material. Spherical PCM particles of 3-3.5 mm in diameter continuously manufactured with molten PCM with those conditions. The particle size of PCM was not affected by the effluent velocity of molten PCM in range of 1.3-1.8 ml/min. DSC, SEM and XRD were also used to characterize the properties of PCM particles.

  • PDF

Analysis of the Charging and Discharging Performance of a New Wavy Cylindrical Shape Capsule (굴곡진 실린더형 캡슐 형상의 축열·방열 성능 해석)

  • Hong, Sang Woo;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.301-307
    • /
    • 2014
  • This paper presents a numerical study on the constrained melting of a phase change material inside various capsule containers, using water and HDPE (High Density Polyethylene) as a PCM and a capsule material, respectively. The computations are based on an iterative, finite-volume numerical procedure that incorporates a single-domain enthalpy formulation for simulation of the phase change phenomenon. Using the enthalpy method, various capsule configurations, such as a capsule from E company, an isochoric cylinder capsule, an equivalent diameter sphere capsule, and an isochoric sphere capsule, are used to investigate the effect of capsule configurations on the charging and discharging performance. A transient three-dimensional model is used for each case. The simulation results show that the capsule from E company results in a higher melting and solidification rate of the PCM, than the other capsule configurations considered in this research.

Heat transfer characteristics of Triple-Tube Type Latent Heat Storage Tank (3중관 튜브형 잠열 축열조에서의 열전달 특성 연구)

  • Lee, W.K.;Han, G.Y.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.71-82
    • /
    • 2001
  • The heat transfer experiment in a latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of triple - tube type ; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and inside tube for hot water recovery. The heat storage tank has the dimension of 60 cm long and 34 cm outside diameter. Paraffin wax(m.p = 55.4C) and sodium acetate trihydrate(m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage$(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

Heat transfer characteristics of Immersed Coil Type Latent Heat Storage Tank (내부코일형 잠열 축열조에서의 열전달 특성 연구)

  • Lee, W.K.;Han, G.Y.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.83-91
    • /
    • 2001
  • The heat transfer experiment in a pilot scale latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of three parts; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and immersed coil in the PCM vessel for hot water recovery. The heat storage tank has the dimension of 115 cm in height and 32 cm outside diameter. Paraffin wax (m.p = 55.4C) and sodium acetate trihydrate (m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage $(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

Preparation and Thermal-property Analysis of Heat Storage Concrete with SSPCM for Energy Saving in Buildings (축열 성능 향상 SSPCM 혼합 콘크리트 제조 및 열적특성 분석)

  • Jeong, Su-Gwang;Chang, Seong Jin;Lim, Jae-Han;Kim, Hee-Sun;Ryu, Seong-Ryong;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • n-octadecnae based shape stabilized phase change material (SSPCM) was prepared by using vacuum impregnation method. And an exfoliated graphite nanoplate (xGnP) which has high thermal conductivity properties is used as a PCM container. And then we made heat storage concretes which contains SSPCM for reducing heating and cooling load in buildings. In the prepararion process, the SSPCM was mixed to a concrete as 10, 20 and 30wt% of cement weight. The thermal properties and chemical properties of heat storage concrete were analyzed from Scanning electron microscope (SEM), Fourier transformation infrared spectrophotometer (FT-IR), Deferential scanning calorimeter (DSC), Thermogravimetric analysis (TGA) and TCi thermal conductivity analyzer. And we conducted surface temperature analysis of SSPCM and xGnP by using heat plate and insulation mold.

A Study on Cooling Characteristics of Clathrate Compound with Concentration of TMA (TMA 농도에 따른 포접화합물의 냉각특성에 대한 연구)

  • Kim Jin-Heung;Chung Nak-Kyu;Kim Chang-Oh
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • This study is investigated the cooling characteristics of the TMA clathrate compound including TMA (Tri-methyl-amine, (CH₃)₃N) of 20~25 wt% as a low temperature storage material at -5℃ heat source. The results showed that as the concentration of TMA is increased, phase change temperature and specific heat are increased, but the supercooling and retention time of liquid phase are decreased. Especially, low temperature storage material containing TMA 25 wt% has the average of phase change temperature of 5.8℃, supercooling of 8.0℃, retention time of liquid phase for 10 minutes and specific heat of 4.099 kJ/kg℃ in the cooling process. From the results of this study, TMA clathrate compound showed higher phase change temperature than water md supercooling repression effect.

Development of Vacuum Cooling for Agriculture Products (농산물 진공예냉장치 개발)

  • Lee, W.O.;Yun, H.S.;Chung, H.;Lee, H.D.;Cho, K.H.;Lee, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.195-201
    • /
    • 2002
  • 입고ㆍ예냉ㆍ출고까지 전 공정을 자동화하고 진공압력을 작물의 품온에 따라 능동적으로 제어할 수 있고 진공챔버내에 콜드트랩을 설치하여 냉각효율을 향상시킨 진공예냉장치를 개발하여 고랭지 배추와 느타리버섯, 상추를 대상으로 예냉성능을 평가하고 예냉이 이들 작물에 미치는 영향을 분석하였다. 가. 새로 개발된 진공식 예냉장치는 공급컨베이어, 좌우 자동 슬라이딩 문, 이송컨베이어, 진공챔버, 진공펌프 콜드트랩, 냉동기로 구성되어 있다. 팔레트를 공급컨베이어에 올려놓고 작동을 시작하면, 입구문이 열리고 팔레트가 진공챔버내로 이송되면, 진공펌프에 의해 진공챔버내의 압력을 떨어뜨리고, 콜드트랩과 냉동기가 작동되어 예냉이 시작된다. 예냉이 완료되면 출구문이 열리고 이송컨베이어가 역회전하여 밖으로 배출되도록 되어있다. 나. 제작된 예냉장치의 예냉성능을 평가하기 위하여 느타리버섯, 고랭지 배추, 상추를 대상으로 냉각속도, 냉각균일도, 예냉후 저장중 품질변화시험을 실시하였다. 다. 시험결과 냉각소요시간은 느타리버섯의 경우 초기품온 15.2$^{\circ}C$에서 $1.5^{\circ}C$까지 냉각시키는데 24분, 고랭지배추는 13.5$^{\circ}C$에서 3.7$^{\circ}C$까지 냉각시키는데 18분, 상추는 13.4$^{\circ}C$에서 2.$0^{\circ}C$까지 냉각시키는데 24분 소요되었다. 평균냉각속도는 느타리버섯이 34.3$^{\circ}C$/h, 고랭지배추 32.6$^{\circ}C$/h, 상추 28.5$^{\circ}C$/h로 나타났다. 라. 또한 각층간의 냉각균일도를 알아보기 위하여 포장상자내에서 표면 품온과 내부품온변화를 조사한 결과 차이가 거의 없어 균일한 냉각이 가능하였다.생기 양단의 온도차는 높게 나타났고, 재생기 양단의 압력 차는 낮게 나타났다. 재생기 축열재로서 철망-철선을 사용할 경우 철선-철망 ø1.2-150이 전열 표면적은 작으나 재생기 양단의 온도차가 가장 큰 것으로 나타났으며 재생기 양단의 압력 차는 가장 낮게 나타나 공시 철망- 철선 혼합 축열재중 가장 우수함을 알 수 있다. 4. 철망사이에 철선을 삽입한 축열재의 경우, 철망사이에 삽입한 철선의 직경이 큰 것이 철선의 직경이 작은 것보다 재생기의 양단의 온도차가 높게 나타났고 재생기 양단의 압력차는 작게 나타났다. 그러므로 철망사이에 철선을 삽입한 것 중 성능이 우수한 것은 150-ø2. 0-150으로 나타났다. 5. 실험한 재생기 축열재들 중에서 성능이 우수한 것들을 비교한 결과, 복합 철선 ø1.2-1 50이 가장 성능이 좋은 것으로 나타났다.적외선.열풍 복합건조방법이 높게 나타나 이것은 곡물 표면에 원적외선 방사에의한 복사열이 전달되어 열장해를 받았기 때문으로 판단되며, 금후 더 연구하여 적정 열풍온도 및 방사체 크기를 구명해야 할 것이다.으로 보여진다 따라서 옻나무 유래 F는 포유동물의 생식기능에 중요하게 작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의 발달과 밀접한 관계가 있음을 시사한다.se that were all low in two aspects, named "the Nonsignificant group". And th

  • PDF

An Experimental Study on the Heat Transfer Characteristics during Outward Melting Process of Ice in a Vertical Cylinder(comparison of thermal performance on the flow direction of working fluid) (수직원통형 빙축열조내 얼음의 외향용융과정시 전열특성에 관한 실험적 연구(작동 유체의 유입 방향에 따른 비교))

  • Kim, D.H.;Kim, D.C.;Kim, I.K.;Kim, Y.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 1996
  • This study presents experimental results of heat transfer characteristics of P.C.M. during outward melting process in a vertical cylinder. The experiment was carried out in six conditions, i. e., three different inlet temperature($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$) and two directions of working fluid(upward and downward). Melting P.C.M. produced a bell-shaped phase change interface. When the inlet temperature was $7^{\circ}C$, the lower region remained at $4^{\circ}C$ until the temperature of upper region reached $4^{\circ}C$. This was due to the state of maximum density of the lower region. When the direction of the working fluid in the case of $7^{\circ}C$, inlet temperature, was upward, the rate of melting and the total melting energy were higher than when it's direction was downward. But the rate of melting and the total melting energy appeared higher value as it's direction was downward when the inlet temperature is $4^{\circ}C$ and $1^{\circ}C$.

  • PDF

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전을 위한 고온 축열 물질의 열전달 특성)

  • Aiming, Mao;KIm, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.63-69
    • /
    • 2007
  • The heat transfer characteristics of inorganic salt for high temperature heat storage material of solar power system were examined. The inorganic salts employed in this study was a mixture of $NaNO_3$ and $KNO_3$ and the operating temperature range was determined by measuring the melting temperature with DSC and by measuring the thermal decomposition temperature with TGA. The heat transfer characteristics was qualitatively obtained in terms of temperature profiles of salt in the tanks during the heat storage and heat release process as a function of steam flow rates, steam inlet temperature and the inlet position of steam. The effects of steam flow rates and inlet temperature of steam were experimentally determined and the effect of natural convection was observed due to significant density difference with temperature.

Automotive Engine Cooling Using a Phase Change Material (상변환 물질을 이용한 자동차 냉각 성능 향상에 대한 연구)

  • Kim, Ki Bum;Moon, Byung Heun;Choi, Kyung Wook;Lee, Ki Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.24-29
    • /
    • 2013
  • An automotive cooling system is designed sufficiently large enough to endure the excessive heat load. In general driving condition, the cooling systems are too large to operate optimally. An experimental study was performed to evaluate a novel automotive cooling strategy using the latent heat of a phase change material (PCM). The strategy is expected to reduce the cooling system size up to around 35% and the engine warm-up time around 60%. The strategy will help improve fuel economy and emissions characteristics of vehicles as a result of reduced total body weight and shortened engine warm-up time by a smaller radiator, as well as more stable combustion mode due to constantly maintained coolant temperature.