• Title/Summary/Keyword: 축약 분산 기억 장치

Search Result 3, Processing Time 0.017 seconds

Sparse Distributed Memory with Monotonic Decision Function (단조 결정 함수를 갖는 축약 분산 기억 장치)

  • Gwon, Hui-Yong;Jang, Jeong-U;Im, Seong-Jun;Jo, Dong-Seop;Hwang, Hui-Yung
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.105-113
    • /
    • 2001
  • 최근 축약 분산 기억 장치(SDM)가 적응적 문제 해결 능력과 하드웨어화의 용이성으로 인해 현실성이 있는 신경망의 한 모델로 제안되었다. 그러나 다층 인식자의 개별 뉴런이 선형 또는 비선형 결정 함수로 해 공간을 이분하고 그들이 다양하게 결합함으로써 일반적인 문제 해결 능력을 갖는데 비해, 축약 분산 기억 장치의 뉴런은 해 공간에서 자신을 중심으로 한 일정 반경 영역을 안과 밖으로 이분하고 이들을 단순하게 합하므로써, 해 공간이 실수 공간과 같이 크기 관계를 갖는 경우 비효율적인 모델로 된다. 본 논문에서는 이러한 축약 분산 기억 장치의 특성과 그 원인을 규명하고, 문제의 해 공간이 단조 증가 또는 감소 결정 함수로 양분되는 경우, 기존의 축약 분산 기억 장치에 크기 비교 과정을 도입함으로써, 주어진 문제를 효율적으로 해결할 수 있는 수정된 축약 분산 기억 장치 모델을 제안한다. 아울러 제안된 모델을 ATM망에서의 호 수락 제어 과정에 적용한 예를 보인다.최근 축약 분산 기억 장치(SDM)가 적응적 문제 해결 능력과 하드웨어화의 용이성으로 인해 현실성이 있는 신경망의 한 모델로 제안되었다. 그러나 다층 인식자의 개별 뉴런이 선형 또는 비선형 결정 함수로 해 공간을 이분하고 그들이 다양하게 결합함으로써 일반적인 문제 해결 능력을 갖는데 비해, 축약 분산 기억 장치의 뉴런은 해 공간에서 자신을 중심으로 한 일정 반경 영역을 안과 밖으로 이분하고 이들을 단순하게 합하므로써, 해 공간이 실수 공간과 같이 크기 관계를 갖는 경우 비효율적인 모델로 된다. 본 논문에서는 이러한 축약 분산 기억 장치의 특성과 그 원인을 규명하고, 문제의 해 공간이 단조 증가 또는 감소 결정 함수로 양분되는 경우, 기존의 축약 분산 기억 장치에 크기 비교 과정을 도입함으로써, 주어진 문제를 효율적으로 해결할 수 있는 수정된 축약 분산 기억 장치 모델을 제안한다. 아울러 제안된 모델을 ATM망에서의 호 수락 제어 과정에 적용한 예를 보인다.

  • PDF

Augmented Sparse Distributed Memory (축약 분산 기억 장치의 개선)

  • 권희용;장정우;임성준;조동섭;황희융
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.354-356
    • /
    • 1998
  • 축약 분산 기억 장치는 적응적 문제 해결 능력과 하드웨어화의 용이성으로 인해 현실성이 있는 신경망의 한 모델로 주목받고 있다. 그러나 다층 인식자의 개별 뉴론이 선형의 결정 함수로 해 공간을 이분하고 그들이 다양하게 결합하므로써 일반적인 문제 해결 능력을 갖는데 비해, 축약 분산 기억 장치의 뉴론은 해 공간에서 자신을 중심으로 한 일정 반경 영역을 안과 밖으로 이분하고 이들을 단순하게 합하므로 해 공간이 크기 관계를 갖는 경우 비효율적인 모델로 된다. 본 논문에서는 이러한 축약 분산 기억 장치의 특성과 그 원인을 규명하고 해결 방안으로써 개선된 축약 분산 기억 장치를 제안한다. 아울러 새로운 모델의 적용 예를 ATM 호 수락 제어 과정을 통해 보인다.

  • PDF

Call admission control for ATM networks using a sparse distributed memory (ATM 망에서 축약 분산 기억 장치를 사용한 호 수락 제어)

  • 권희용;송승준;최재우;황희영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.1-8
    • /
    • 1998
  • In this paper, we propose a Neural Call Admission Control (CAC) method using a Sparse Distributed Memory(SDM). CAC is a key technology of TM network traffic control. It should be adaptable to the rapid and various changes of the ATM network environment. conventional approach to the ATM CAC requires network analysis in all cases. So, the optimal implementation is said to be very difficult. Therefore, neural approach have recently been employed. However, it does not mett the adaptability requirements. because it requires additional learning data tables and learning phase during CAC operation. We have proposed a neural network CAC method based on SDM that is more actural than conventioal approach to apply it to CAC. We compared it with previous neural network CAC method. It provides CAC with good adaptability to manage changes. Experimenatal results show that it has rapid adaptability and stability without additional learning table or learning phase.

  • PDF