• Title/Summary/Keyword: 축류-원심 압축기

Search Result 5, Processing Time 0.018 seconds

Preliminary Aerodynamic Design of 13:1 Pressure Ratio Axial-Centrifugal Compressor (13:1의 압축비를 갖는 축류-원심형 압축기의 기본 공력설계)

  • 김원철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Preliminary aerodynamic design of a compressor is carried out to meet the design requirements which are pressure ratio of 13, air mass flow rate of 4 ㎏/s and rotational speed of 45,000 rpm. The compressor type is chosen as an axial-centrifugal compressor from the design requirements which is suitable for a medium power class turboprop or turboshaft engine. Its overall isentropic efficiency is estimated to be 0.796 and its surge margin to be 20% exceeding the design requirement. This paper summarizes the aerodynamic design details including the design procedures and the results of the axial -centrifugal compressor.

A Study of Windmilling Characteristics of Twin-Spool Axi-Centrifugal Turbo-Fan Engine Using an Analysis of Bypass-duct Loss (바이패스 덕트 손실 해석을 이용한 복축 혼합형 터보팬 엔진의 윈드밀 특성 연구)

  • 김민정;최성욱;노태성;임진식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.211-214
    • /
    • 2003
  • For prediction of the windmilling performance with consideration of bypass-duct loss of the twin-spool axi-centrifugal turbo-fan engine in flight condition, this study has examined the windmilling process and the physical phenomenon of the engine parts. Also, a mixing phenomenon with air passed through the bypass-duct has been analyzed. The results of the predicted windmilling performance has been compared and analyzed using the dimensional parameters.

  • PDF

Performance test of a micro-turbine jet engine (초소형 가스터빈 엔진 성능시험)

  • Shin, Young-Gy;Kim, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.788-793
    • /
    • 2001
  • Test experience with a micro-turbine jet engine is introduced. The engine provides us with valuable opportunities to experience know-hows essential for engine development. It consists of a single radial compressor and a single stage turbine. Engine starting procedure has been established after many trials and errors. Static and dynamic engine performance tests were conducted. Static performance was found to be inferior to that advertised by the manufacturer. Further improvement is needed. Dynamic performance revealed that engine thrust overshoots unfavorably for the purpose of UAV control.

  • PDF

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.