• Title/Summary/Keyword: 축류형 송풍기

Search Result 20, Processing Time 0.028 seconds

Development of Control Logic for Operation of Fan Stall Warning Equipment Used in Coal-Thermal Power Plant (석탄 화력발전소 송풍기 맥동감시장치 운전을 위한 제어로직 개발)

  • Roh, Yong-Gi;Cho, Hyun-Seob;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.837-846
    • /
    • 2006
  • In this paper, axial flow fans which applied at coal-thermal power plant(500[MW]) cause a unique phenomenon called 'Stall' under normal operation and this causes abnormal operation and damages the blades. In order to prevent these abnormal operation, this study estimates the reliability of new system which is applying control logic on each parameter with existing black-box-type by field test.

  • PDF

Localization Development of Axial Fan for KM-SAM Multi-function radar (KM-SAM 다기능레이더용 축류형 송풍기 국산화 개발)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Seo, Dae-Sue
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • This paper describes the localization development of an axial fan for KM-SAM multi-function radar. The multi-function radar, which is constantly affected by the external environment, is a key instrument for detecting and tracking low and medium altitude threat targets. Operating this equipment smoothly requires a fan for controlling the internal temperature and humidity. Presently, all such fans are imported. To solve these problems, localization development research was proposed. The development of localization includes analysis of requirements through review of related technical reports such as original equipment and system equipment specification, prototype design, and verification of design requirement through performance test and environmental test. The study results are described. The blower consisted of an axial fan with guide vanes and the motor was designed to generate a maximum airflow of 970 CFM and a wind pressure of 4.8 IWG. Six prototypes were manufactured for performance evaluation. In addition, for reliable data acquisition, AC power supply, fan performance tester and data acquisition equipment were designed and tested. All prototypes were verified as having design requirements equal to or better than those of imports.

A Study of Fan Stall Warning System Motion Characteristics (축류형 송풍기 운전 특성에 관한 연구)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.191-194
    • /
    • 2006
  • 500MW급 대용량 보일러 통풍계통의 Fan Stall 감시 장치는 Fan 이상 발생시 Fan을 보호하기 위하여 정지시키는 기능을 한다. 그러나 Fan Stall 감시 장치의 빈번한 고장으로 신뢰성이 저하되고 운전에 영향을 미치므로 이것을 DCS Logic으로 구성하여 신뢰성을 향상시켰다.

  • PDF

High-Efficiency Design of Axial Flow Fan through Shape Optimization of Airfoil (익형의 형상최적화를 통한 고효율 축류송풍기 설계)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Choi, Jae-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • This study presents a numerical optimization to optimize an axial flow fan blade to increase the efficiency. The radial basis neural network is used as an optimization method with the numerical analysis by Reynolds-averaged Navier-Stokes equations using SST model as turbulence closure. Four design variables related to airfoil maximum camber, maximum camber location, leading edge radius and trailing edge radius, respectively, are selected, and efficiency is considered as objective function which is to be maximized. Thirty designs are evaluated to get the objective function values of each design used to train the neural network. Optimum shape shows the efficiency increased by 1.0%.

A Computerized Axial Flow Fan Design System for Noise and Performance Analysis (성능 및 소음 해석 기능이 수반된 전산화된 축류 송풍기 설계 체제)

  • Chung, Dong-Kyu;Noh, Jun-Gu;Seo, Jae-Young;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.37-42
    • /
    • 2001
  • A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.

  • PDF

Optimization of Stacking Line and Blade Profile for Design of Axial Flow Fan Blade (중첩선과 단면형상을 고려한 축류 송풍기 날개의 최적설계)

  • Samad, Abdus;Lee, Ki-Sang;Jung, Sang-Ho;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.420-423
    • /
    • 2008
  • This present work is to find optimum design of a NACA65 axial fan blade with weighted average surrogate model. The numerical analysis by Reynolds-average Navier-Stokes equations with shear stress turbulence(SST) is discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The blade aerodynamic shape is modified by six design variables for the optimization. The blade profile as well as stacking line is modified to enhance blade total efficiency. Six design variables, airfoil maximum camber, maximum camber location, leading edge radius, trailing edge radius, lean angle at 50% span and lean angle at 100% span, are selected for blade profile to enhance the total efficiency. The PBA model which is basically weighted average of the basis surrogates is used to find the optimal design in the design space from the constructed response surface model for the objective function. By the optimization, the total efficiency is increased by 1.4%.

  • PDF

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan (축류송풍기 부착형 공냉식 열교환기의 진동저감)

  • 정구충;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.163-168
    • /
    • 2001
  • Vibration problems occurred in an air cooled heat exchanger with axial flow fan for a petrochemical plant were investigated. Experimental field test and theoretical verification were performed. To find the main cause of the high vibration of the fan at the air inlet of the axial fan, the frequency spectrum was measured. The natural frequency of the driving support of the heat exchanger was numerically calculated. Both of the measured and the natural frequency were approximately equal to the blade passing frequency. Because it was difficult to modify the structure of the driving support during the normal operation of the plant, the blade number of the fan was increased, which greatly reduced the vibration level of the heat exchanger.

  • PDF

Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan (축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발)

  • Chung, Dong-Kyu;Hong, Soon-Seong;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF