• Title/Summary/Keyword: 축동력

Search Result 22, Processing Time 0.018 seconds

Analysis and Performance Test for the Fan of a Wide Area Sprayer of Livestock Farm (축산 농가용 광역방제기 팬의 성능실험 및 분석)

  • Hong, J.T.;Min, B.R.;Kim, D.W.;Seo, K.W.;Kim, W.;Lee, S.K.;Kim, S.Y.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • This research was carried out to test and analyse the capability of a fan for development of a sprayer in actual livestock farm. A fan was designed and made to be able to spray agricultural chemicals within 140mm in a maximum scattering range and 100m in an effective scattering range. Accordingly, its' flow rate was $3,600\;m^3/min$, and static pressure was 100 mmAq for a wide area sprayer to be sprayed widely and far. Fan performance, which was given $600\;m^3/min$ flow rate and 500 mmAq total pressure, was tested fur basic experiment. As the result, the axial power showed minimum error, which be designed to keep the fan performance. And power efficiency was the maximum. Sound level was 92.1dB that wasn't enough to environmental standard. If we take the sealed place into consideration, sound level is suitable for environmental standard.

  • PDF

Development of a New Commercial Grain Cooler (곡물냉각기의 개발)

  • 김동철;김의웅;금동혁;한종규
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.250-256
    • /
    • 2004
  • The objectives of this study were to develop a new commercial grain cooler suited to domestic weather and post-harvesting conditions for paddy, and to evaluate the performance. A prototype grain cooler capable of cooling paddy of 200 tons within 24 hours was developed. The grain cooler was designed to control the refrigeration capacity from 0 to 100% by controlling the capacity of compressor with unloading solenoid valve and by changing the flow rates of hot refrigerant gas flowing into reheater and evaporator from compressor. And a controller with one chip microprocessor was developed to control temperature and relative humidity of cooling air. The maximum cooling capacity of the grain cooler was 35,284㎉/hr at condensing/evaporating pressure of 16.5/3.6 kgf/$\textrm{cm}^2$. Maximum flow rate of cooling air was 120 ㎥/min at static pressure of 279 mmAq. The total maximum required power was 22.8㎾, and total required energy was saved from 26.7 to 33.3% of maximum power depending on operating conditions. The coefficient of performance of refrigeration devices and total coefficient of performance of the grain cooler were 4.71 and 1.8, respectively.