• Title/Summary/Keyword: 축계

Search Result 287, Processing Time 0.023 seconds

Characterization and Detection of a Free-falling State of a Mobile HDD Using the Electromechanical Analysis in a Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.12-18
    • /
    • 2006
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by the fluid dynamic bearing under the free-falling condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravity force exerted on the rotating part of HDD, and the free-falling condition can be detected by observing the signal of the spindle motor and disk-head interface without using an accelerometer.

The Introduction of Shaft Alignment Calculation for very Large Container Vessel (초대형 콘테이너선의 축계정렬 계산 사례 소개)

  • Kang Dong Chun;Park Kun Woo;Kim Kyoung Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, it is much more required to approach the accurate shaft alignment analysis according to the tendency of active showing in large container vessel and that of the heavy weight of propeller in connection with it. Shaft alignment calculation lies upon how the pressure apply on bearings properly in operation of main engine and how the stress of shaft puts within that of limit of bearing material and how the movement of shaft is prospected owing to propeller forces and moments. Therefore, we have conducted the shaft alignment calculation of very large container vessel considering the deformation of hull structure and the propeller forces and moments and the static and dynamic condition of shaft. The calculation results show the pressure distribution of aft bush and the movement of shaft in bearing. The shaft alignment calculation helps the stable application of shaft alignment, which was proved in sea trial.

  • PDF

Effects of Propeller Forces on the Propeller Shaft Bearing during Going Straight and Turning of Ship (선박의 직진과 선회 시의 프로펠러 하중이 프로펠러 축 베어링에 미치는 영향)

  • Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • In the beginning of the 1990's, numerous shaft bearing damages, especially in aft stern tube bearing, were reported. The main reasons of bearing damages were estimated that hull deflections have been increased by more flexible hulls and propeller dynamic loads have not been considered in shaft alignment. After that time, studies to take into account hull deflections in shaft alignment have been actively carried out, but for the latter leave much to be desired. In this study, the effects of the propeller forces on the propeller shaft bearing have been investigated by estimating thrust eccentricity as reasonable as possible although some assumptions to simulate turning of ship were introduced. Three dimensional nominal wake to estimate thrust eccentricity have been calculated by using CFD analysis and model test in the towing tank. This study presents the procedure to estimate the propeller eccentric forces and their influence on the stern tube bearing for a container carrier. As a result, it has been found that the lateral propeller forces in turning condition should be considered in shaft alignment to prevent shaft bearing damages.

Development of Analysis Program of Dynamic Characteristic for the Propulsion Shafting System (선박추진축계 동특성 분석 프로그램 개발)

  • Ha, Jeong-Min;Lee, Jeong-Myeong;Lee, Jeong-Hoon;Kim, Yong-Whi;Ahn, Byeong-Hyun;Choi, Byeong-Keun;Kim, Won-Chul
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Due to the changes of marine transportation industry, it requires ship in larger scale and high speed. In order to operate efficiently, the engine should be work in high power and high horse power. The increase of the number of the propeller blades and the pitch of the screw and the weight, vibration of shafting problems occurs. To evaluate the safety of the system through analyzing the dynamic characteristics propulsion shafting system, was used to prove or to verify the Lalanne & Ferraris model validation.. It indicates that the Program through Campbell diagram and Critical speed map, Root rocus map, to ensure the reliability of the experimental model.

Crystal structure analysis of orthohombic $Sr_{0.6}Ca_{0.4}CuO_2$ compound (사방정계 $Sr_{0.6}Ca_{0.4}CuO_2$ 화합물의 결정구조해석)

  • Park, H.M.;Goetz, D.;Hahn, Th.
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1996
  • Sr0.6Ca0.4CuO2 single crystal has been synthesized by flux method and characterized by the single crystal X-ray diffraction. The compound has the orthorhombic system and the space group is Cmcm(63), lattice parameters are a=3.4645Å, b=16.1417Å, c=3.8727Å. In the (Sr1-xCax)CuO2 compound the limit of Ca from substitution for Sr was determined by the change of bond length. For this, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDAX) and electron probe micro-analysis (EPMA) were used. From the change of Cu-O bond length as the Ca substitution, we concluded the limit of Ca incorporation Xca≒0.73.

  • PDF

Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method (전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

A Study on Design Improvement and Strength Evaluation of Shafting System for Washing Machine (드럼세탁기 축계의 설계개선 및 강도평가에 관한 연구)

  • Kim Eui-Soo;Kim Sang-Uk;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.154-162
    • /
    • 2006
  • By laying its drum horizontally, front-loaded washing machine mostly used in Europe that uses the head of the water to launder was appropriate for washing only small amount of laundry. However, the demands of customers are requiring front-loaded washing machine to handle big capacity laundry as well, and have faster rotation speed to increase drying ability. To meet such demands, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Shafting system is mainly divided into flange and shaft. Flange is located between the drum and shaft, transferring power from the shaft to drum, and acting as a supporter of the back of the drum. Shaft is connected from the flange to insert production, transferring power from the motor to drum, and mainly acting as stiffness against the horizontal weight of the shafting system. In this paper, strength analysis and experiment were executed on both the shaft and flange of front-loaded washing machine to suggest the design improvement of shafting system for big capacity, high-rotation drying. Also, verification of this evaluation was executed on fracture strength and fatigue life for studied shaft system.

Torsional stress prediction of turbine rotor train using stress model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF

Dynamic analysis of spindle system with magnetic coupling(1) (마그네틱 커플링을 장착한 축계의 동적해석(I))

  • Kim, S.K.;Lee, S.J.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-105
    • /
    • 1994
  • In this study, the transverse and the torsional vibration analyses of a precision dynamic drive system with the magnetic coupling are accomplished. The force of the magnetic coupling is regarded as an equivalent transverse stiffness, which has a nonlinearity as a function of the gap and the eccentricity between a driver and a follower. Such an equivalent stiffness is calculated by and determined by the physical law and the calculated equivalent stiffness is modelled as the truss element. The form of the torque function transmitted through the magnetic coupling is a sinusoidal and such an equivalent angular stiffness, which represents the torque between a driver and a follower, is modelled as a nonlinear spring. The main spindle connected to a follower is assumed to a rigid body. And then finally we have the nonlinear partial differential equation with respect to the angular displacements. Through the procedure mentioned above, we accomplish the results of the torsional vibration analysis in a spindle system with the magnetic coupling.

  • PDF

Characterization and Detection of a Free-Falling State of a mobile HDD Using Electromechanical Analysis in Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.324-329
    • /
    • 2005
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by fluid dynamic bearing under the free-failing condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravely force exerted on the rotating part of HDD, and the free-failing condition can be detected by observing the signal of the spindle motor and disk-head interface without using the accelerometer.

  • PDF