• Title/Summary/Keyword: 축강성

Search Result 286, Processing Time 0.026 seconds

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.

Novel Method for Numerical Analyses of Tapered Geometrical Non-linear Beam with Three Unknown Parameters (3개의 미지변수를 갖는 변단면 기하 비선형 보의 수치해석 방법)

  • Lee, Byoung Koo;Oh, Sang Jin;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • This paper deals with a novel method for numerical analyses of the tapered geometrical non-linear beam with three unknown parameters, subjected a floating point load. The beams with hinged-movable end constraint are chosen as the objective beam. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The first order simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. A novel numerical method for solving these equations is developed by using the iteration technique. The processes of the solution method are extensively discussed through a typical numerical example. For validating theories developed herein, laboratory scaled experiments are conducted.

Development of Furan Mold Design and Machining System for Marine Propeller Casting (선박용 프로펠러 후란주형 설계 및 가공 시스템 개발)

  • Park, Jung Whan;Jung, Chang Wook;Kwon, Yong Seop;Kang, Sung Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • A furan mold design and machining system for marine propeller casting was developed. In general, a large marine propeller is produced by casting in a foundry, where the upper and lower molds are constructed of cement or other materials like furan. Then, the cast workpiece is machined and manually ground. Currently, furan mold construction requires a series of manual tasks. This introduces a fairly large amount of stock allowances, which require a considerable number of man-hours for later machining and grinding, and also increase the work processes. A mold design and off-line robot programming software tool with a six-axis robot hardware system was developed to enhance the shape accuracy and productivity. This system will be applied in a Korean ship building company.

A study of the analysis of shaft alignment considering hull deflections for 50,000 DWT oil/chemical tankers (5만 DWT 석유화학제품운반선의 선체변형을 고려한 추진축계 정렬해석 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.191-197
    • /
    • 2016
  • The shaft system of a vessel becomes stiffer because of larger engine power, whereas the hull structure becomes more flexible because of scantling optimization conducted by using high-tensile thick steel plates. The draught-dependent deformation of the hull affects each bearing offset and reaction force comprising the subsequent shaft system. This is the reason that more sophisticated shaft alignments are required. In this study, an FE analysis performed under the expected operating conditions of two (2) vessels, as maximum draught change and to analyze the shaft alignment using the relative bearing offset change, which was derived from an FE analysis of the 50,000 DWT oil/chemical tanker, which has become an eco-friendly vessel in recent years. Based on this, the influence of the hull deflection on the bearing offset was reviewed against results for shaft alignment conditions.

Representation of Dynamic Stiffness Matrix with Orthogonal Polynomials (직교다항식을 이용한 구조계의 축약된 동강성행렬 표현)

  • 양경택;최계식
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • A modeling method is described to provide a smaller structural dynamic model which can be used to compare finite element model of a structure with its experimental counterpart. A structural dynamic model is assumed to be represented by dynamic stiffness matrix. To validate a finite element model, it is often necessary to condense a large degrees of freedom (dofs) to a relatively small number of dofs. For these purpose, static reduction techniques are widely used. However, errors in these techniques are caused by neglecting frequency dependent terms in the functions relating slave dofs and master dofs. An alternative method is proposed in this paper in which the frequency dependent terms are considered by expressing the reduced dynamic stiffness matrix with orthogonal polynomials. The reduced model has finally a minimum set of dofs, such as sensors and excitation points and it is under the same condition as the physical system. It is proposed that the reduced model can be derived from finite element model. The procedure is applied to example structure and the results are discussed.

  • PDF

A Numerical Study to Estimate the Lateral Responses of Steel Moment Frames Using Strain Data (변형률 데이터를 이용한 철골모멘트골조의 횡응답 예측을 위한 해석적 연구)

  • Kim, Si-Jun;Choi, Se-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.113-119
    • /
    • 2016
  • In this study, the method to predict the lateral response by using strain data is presented on the steel moment frame. For this, the reliability of the proposed method by applying the example of five-story frame structure were verified. Using the strain value of columns, it predicted the lateral response of structure. It is assumed that all of four strain sensors for one column set up and the strain responses of both end of the column are utilized. The lateral response of member is calculated by using the slope deflection method. Also, using the acceleration response of the one layer, the stiffness of the rotation spring located in the supporting point is predicted. As a result, it was effective to understand the lateral displacement and acceleration responses and to predict local damage and location.

Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and High Strength Rebar (ECC와 고장력 철근으로 보강된 철근콘크리트 보의 휨 실험)

  • Cho, Hyun-Woo;Bang, Jin-Wook;Han, Byung-Chan;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 2011
  • ECC is a micro-mechanically designed cementitious composite which exhibits tightly controlled crack width and strain hardening behavior in uniaxial tension while using a moderate amount of reinforcing fiber, typically less than 2% fiber volume fraction. Recently, a variety of applications of this material ranging from repair and retrofit of structures, cast-in-place structures, to precast structural elements requiring high ductility are developed. In the present study, a retrofitting method using ECC reinforced with high strength rebar was proposed to enhance load-carrying capacity and crack control performance of deteriorated reinforced concrete (RC) beams. Six beam specimens were designed and tested under a four-point loading setup. The flexural test revealed that load-carrying capacity and crack control performance were significantly enhanced by the use of ECC and high strength rebar. This result will be useful for practical field applications of the proposed retrofitting method.

Prediction of Mechanical Properties of Honeycomb Core Materials and Analysis of Interlaminar Stress of Honeycomb Sandwich Composite Plate (하니컴코어 재료의 기계적 물성 예측과 하니컴 샌드위치 복합재료 평판의 층간응력 해석)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • Honeycomb sandwich composite(HSC) structures have been widely used in aircraft and military industry owing to their light weight and high stiffness. Mechanical properties of honeycomb core materials are needed for accurate analysis of the sandwich composites. In this study. theoretical formula for effective elastic modulus and Poisson's ratio of honeycomb core materials was established using an energy method considering the bending, axial and shear deformations of honeycomb core walls. Finite-element analysis results obtained by using commercial FEA code, ABAQUS 6.3 were comparable to the theoretical ones. In addition, we performed tensile test of HSC plates and analyzed deformation behaviors and interlaminar stresses through its FEA simulation. An increased shear stress along the interface between surface and honeycomb core layers was shown to be the main reason for interfacial delamination in HSC plate under tensile loading.