법원도서관이 발간하는 판례공보를 기반으로 판결문 자동요약을 위한 학습 데이터들이 구축되고 있다. 그런데 판결문 요약에서는 뉴스 요약과는 달리 추출요약과 생성요약 방식이 함께 사용되는 특수성이 있고, 이러한 특수성 때문에 현재 판결문 요약 데이터셋이 요약 프로그램의 성능 향상을 이끌지 못하고 있다고 생각된다. 따라서 법률가들이 판결문을 요약하는 방식을 반영하여, 추출요약 방식으로 작성된 판결요지와 생성요약 방식으로 작성된 판결요지를 분리해서 요약 데이터셋을 만들 필요가 있다. 추출요약과 생성요약에 관한 데이터셋을 따로 구축하기 위해서는 판례공보의 판결요지를 추출요약과 생성요약으로 분류하는 작업이 필요한데, 감성 분석에 사용되는 알고리즘이 판결요지의 분류 작업에 응용될 수 있다는 것을 실험 결과로 알 수 있었다.
본 논문에서는 추출 요약 방식과 질의어 기반의 요약 방식을 혼합한 문서 요약 방법에 관해서 기술한다. 학습문서를 이용해 주제어구 추출을 위한 학습 모델을 만든다. 학습 알고리즘은 Naive Bayesian, 결정트리, Supported Vector Machine을 이용한다. 구축된 모델을 이용하여 입력 문서로부터 주제어구 리스트를 자동으로 추출한다. 추출된 주제어구들을 질의어로 하여 이들의 국부적 유사도에 의한 기여도를 계산함으로써 요약문을 추출한다. 본 논문에서는 주제어구가 원문 요약에 미치는 영향과, 몇 개의 주제어구 추출이 문서 요약에 적당한지를 실험하였다. 추출된 요약문과 수동으로 추출한 요약문을 비교하여 결과를 평가하였으며, 객관적인 성능 평가를 위하여 MS-Word에 포함된 문서 요약 기능과 실험 결과를 비교하였다.
추출 요약(Extractive summarization)은 문서내에 주요한 요약정보가 되는 문장 또는 단어를 추출하여 요약을 생성하는 기법이다. 딥러닝 기법들이 많이 발전하면서 요약 기법에도 sequence-to-sequence와 같은 많은 시도들이 있었지만 대부분의 방법론들은 딥러닝의 모델 구조관점으로 접근하거나 요약에 있어서 단순히 입력 텍스트를 넣고 알고리즘이 처리하는 머신 리딩(Machine reading)관점으로 접근한다. 텍스트 요약 태스크 자체는 사람이 텍스트에 대한 정보 파악을 요약문을 통해 빠르게 하고 싶은 궁극적인 목표가 있으므로, 사람이 텍스트 요약에 필요한 인지처리과정을 반영할 필요가 있다. 결국, 기존의 머신 리딩보다는 휴먼 리딩(Human reading)에 관한 이해와 구조적 접근이 필요하다. 따라서 본 연구는 휴먼 리딩을 위한 인지처리과정을 위해 아이트래킹 데이터 기반의 새로운 추출 요약 모델을 제안한다.
문서 요약은 입력 문서가 가진 주제를 유지하면서 크기가 축약된 새로운 문서를 생성하는 것이다. 문서 요약의 방법론은 크게 추출 요약과 추상 요약으로 구분된다. 추출 요약의 경우 결과가 문서 전체를 충분히 대표하지 못하거나 문장들 간의 호응이 떨어지는 문제점이 있다. 최근에는 순환 신경망 구조의 모델을 이용한 추상 요약이 활발히 연구되고 있으나, 이러한 방법은 입력이 길어지는 경우 정보가 누락된다는 문제점을 가지고 있다. 본 논문에서는 이러한 단점들을 해소하기 위해 추출 요약으로 입력 문서의 중요한 일부 문장들을 선별하고 이를 추상 요약의 입력으로 사용했을 때의 성능 변화를 관찰한다. 추출 요약을 통해 원문 대비 30%까지 문서를 요약한 후 요약을 생성했을 때, ROUGE-1 0.2802, ROUGE-2 0.1294, ROUGE-L 0.3254의 성능을 보였다.
문서 요약은 입력 문서가 가진 주제를 유지하면서 크기가 축약된 새로운 문서를 생성하는 것이다. 문서 요약의 방법론은 크게 추출 요약과 추상 요약으로 구분된다. 추출 요약의 경우 결과가 문서 전체를 충분히 대표하지 못하거나 문장들 간의 호응이 떨어지는 문제점이 있다. 최근에는 순환 신경망 구조의 모델을 이용한 추상 요약이 활발히 연구되고 있으나, 이러한 방법은 입력이 길어지는 경우 정보가 누락된다는 문제점을 가지고 있다. 본 논문에서는 이러한 단점들을 해소하기 위해 추출 요약으로 입력 문서의 중요한 일부 문장들을 선별하고 이를 추상 요약의 입력으로 사용했을 때의 성능 변화를 관찰한다. 추출 요약을 통해 원문 대비 30%까지 문서를 요약한 후 요약을 생성했을 때, ROUGE-1 0.2802, ROUGE-2 0.1294, ROUGE-L 0.3254의 성능을 보였다.
뉴스 콘텐츠 등 웹을 통해 제공되는 많은 정보들은 불필요한 클러터를 많이 포함하고 있다. 이러한 클러터들은 문서의 요약, 추출, 검색과 같은 자동화된 정보처리 시스템의 구축을 어렵게 한다. 본 논문에서는 웹 뉴스 콘텐츠를 추출하고 이를 요약하는 시스템을 구축하고자 한다. 추출 시스템은 HTML로 된 뉴스 콘텐츠를 입력받아 DOM 트리와 유사한 요소 트리를 구축하며, 이 요소 트리에서 HTML 태그의 하이퍼링크 속성을 갖는 클러터를 제외하면서 본문을 추출한다. 추출 시스템을 통해 추출된 본문은 요약시스템으로 전달되어 핵심 문장이 추출된다. 요약 시스템은 공기관계 그래프를 이용하여 구성한다. 본 논문에서 구현한 시스템을 통해 추출된 요약 문장은 SMS와 같은 메시지 서비스를 통하여 PDA이나 모바일 폰 등에 전송될 수 있을 것으로 기대된다.
문서 추출 요약 연구에서는 문장 간 관계를 기반으로 중요한 문장을 선택하는 다양한 방법들이 제안되었다. 문장의 도합유사도를 이용한 한국어 문서 요약에서는 문장의 도합유사도를 문장 정보량으로 보고, 이를 기준으로 중요한 문장을 선택하여 요약문을 추출하였다. 그러나 이는 각 문장이 전체 문서에 기여하는 다양한 중요도를 고려하지 못한다는 문제가 있다. 이에 본 연구에서는 문장의 정량적 정보량과 의미적 정보량을 기반으로 중요한 문장을 선택하여 요약문을 제공하는 문서 추출 요약 방법을 제안한다. 실험 결과, 추출 문장 일치도는 58.56%, ROUGE 점수가 34로 비교 연구보다 우수한 성능을 보였으며, 딥러닝 기반 방법과 비교해 추출 방법은 가볍지만 성능은 유사하였다. 이를 통해 문장 간 의미적 유사성을 기반으로 정보를 압축해 나가는 방식이 문서 추출 요약에서 중요한 접근 방법임을 확인하였다. 또한 빠르게 추출된 요약문을 기반으로 문서 생성요약단계를 효과적으로 수행할 수 있으리라 기대한다.
본 논문에서는 보다 간결한 요약문을 생성하기 위하여. 문장 전체를 추출하는 것이 아니라 문장의 일부분을 요약으로 추출한다. 그런데 한국어의 경우 문장 구조상 반복되는 문장성분을 생략하는 영 대용 문제가 빈번하게 발생하기 때문에, 문장의 일부분 추출시. 생략된 성분을 복원하지 않으면 요약문의 의미가 불완전하고 모호해 질 수 있다. 본 논문에서는 문서 안에서 중요한 부분을 추출한 뒤, 생략된 성분을 복원하여 요약문의 가독성을 놓이는 방법을 제안한다. Luhn의 방법을 이용하여 문서내의 중요 클러스터를 추출하였고, 기존의 문장분할 및 영 대용어 복원 알고리즘을 사용하여 생략된 성분을 복원하였다. 본 논문에서 제안된 요약 방법은 신문기사와 같이 문장의 수는 많지 않고, 문장의 길이가 비교적 긴 문서를 짧은 문장으로 요약하는 데 효율적이다.
본 논문은 신문 기사문에 특정적인 정보 추출의 내용과 방법을 제안한다. 신문 기사에서 이용자가 원하는 정보 추출의 내용으로 육하원칙을 중심으로 한 다섯 가지 정보를 제시하였으며, 이를 추출하기 위해 통계적인 기법을 주로 이용하고 부분적으로 언어적 지식을 이용하였다. 본 논문에서는 비교적 문서의 길이가 짧은 신문기사문을 요약 대상으로 하므로 단락이나 문장이 아닐 절 이하 단위로 추출하며, 중심절을 추출한 뒤 그 절과의 관계를 통해 나머지 정보들을 추출함으로써 추출되는 내용이 유사하거나 산만하지 않기 때문에 이 추출 정보로 요약문을 생성할 경우에 긴밀한 요약문을 생성할 수 있다.
수많은 종류의 비디오 데이터를 효율적으로 검색하기 위해서는 데이터를 분석하여 사용자에게 먼저 전체 비디오의 요약을 제시하는 것이 효과적이다. 본 논문에서는 기사 단위로 분할된 뉴스 기사 전체를 보여주지 않으면서도 기사의 내용을 왜곡됨이 없이 요약하여 효과적으로 사용자에게 보여주기 위한 방법을 제안한다. 본 논문에서는 사용자에게 시각적인 요약 정보를 앵커 프레임 추출 및 대표 프레임 추출을 통해 필름 스트림(film trip)의 형태로 제시하고, 기사를 소개하는 앵커의 첫 대사를 폐쇄 자막(closed-caption)을 이용하여 추출하여, 이를 기사의 내용에 대한 요약으로 필름 스트립과 같이 제시하도록 하였다. 앵커 프레임을 추출하기 위해 본 논문에서는 폐쇄 자막에서의 "앵커:" 태그가 존재하는 시간 구간과 동기된 프레임을 선정한다. 또한 대표 프레임은 공개형 자막(open-cpation)이 존재하는 프레임과 빈도에 기반한 가중치가 높은 .폐쇄 자막에서의 키워드와 동기된 프레임을 선정하도록 하였다. 본 논문의 뉴스 기사 요약 시스템은 시각적인 프레임제시와 함께 기사의 내용을 바탕으로 하는 기사 요약문을 같이 사용자에게 제공함으로써 기존의 필름 스트립형태만 제공하던 시스템에 비하여 사용자 중심의 지능형 요약 서비스가 가능함을 실험을 통해 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.