• Title/Summary/Keyword: 추천 시스템

Search Result 1,752, Processing Time 0.033 seconds

A Learning Model for Recommendation of Humor Documents (유머문서 추천을 위한 기계학습 기법)

  • 이종우;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.253-255
    • /
    • 2001
  • 인터넷을 통한 사용자의 선호도를 분석하고 협력적 여과 및 내용기반 여과 기술을 결합 이용하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. 유머문서 추천 기술은 다양한 아이템에 대한 여과 및 추천 기술로 확장되어 인터넷을 통한 과다 정보 시대에 필요한 소프트봇 혹은 지능형 에이전트 기술에 적용될 수 있다. MrHumor 추천시스템은 적응형 학습 시스템으로서 새로운 사용자의 선호도에 대한 학습량과 추천시기에 따라 이용할 추천방식이 다른 성능을 보이는데 여러 가지 상황에서도 적절한 동작을 보이기 위하여 MrHumor에서는 은닉변수 모델을 이용하여 사용자의 인구통계적 정보와 문서의 내용적 특징간의 관계를 학습하여 초기 추천을 행하고 SVM을 이용하여 개인의 선호도를 학습한 내용 기반의 여과와 적응형 k-NN모델을 이용한 협력적 여과를 결합하여 추천을 수행한다. 제안된 방식에 의한 추천 성능은 3방식이 각각 이용된 경우에 비해 안정적이고 높은 예측 정확도를 보인다.

  • PDF

The UCC Recommended System Design for Referenced Content (참조된 콘텐츠를 위한 UCC 추천시스템 설계)

  • Song, Ju-Hong;Hong, In Hwa;Kim, Chan Gyu;Moon, Nam-Mee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.57-58
    • /
    • 2010
  • UCC 제작자에겐 기존의 추천 서비스와는 차별화된 저작권과 저작 목적 등을 고려한 별도의 추천서비스가 필요하다. 본 논문에선 UCC를 제작하는데 있어 발생하는 저작권문제를 효과적으로 해결하기 위해 UCC 제작 시 참조된 UCC들의 정보를 메타데이터의 reference 요소로 기재할 수 있도록 하였으며, UCC 제작 사용자에게 특화된 추천서비스를 제공하기 위해 제작된 UCC의 참조 데이터를 이용한 협업 필터링 기반의 추천 시스템을 구성하고 있다. 추천시스템은 메타데이터의 tag, reference 요소를 이용해 참조된 UCC 그룹군에서 제작자가 참조한 UCC와 유사한 참조 UCC를 추천 리스트로 만들어서 제공한다. 향후 본 시스템의 효율성 검증을 통해 UCC 제작에 있어 보다 효율적이고 제작자 편이성이 높은 제작자 맞춤형 UCC 추천 서비스가 IPTV, SmartTV등의 융합형 방송서비스 통해 제공될 수 있을 것 이다.

  • PDF

Design of Personalized Recommendation System about Tourist Information Using Ontology (온톨로지를 이용한 관광정보 개인화 추천 시스템 설계)

  • Hwang Myunggwun;Kong Hyunjang;Jung Kwanho;Kim Pankoo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.685-687
    • /
    • 2005
  • 본 연구에서는 관광정보를 온톨로지로 구축하고, 개인화 추천 방법들 중 규칙 기반 필터링과 학습 에이전트를 적용하여 사용자에게 관광 정보를 정확하게 추천하기 위한 시스템을 설계하였다. 여기에서는 제주도 관광에 관한 정보의 일부를 개인화 추천 시스템에 적합하도록 각각의 도메인 온톨로지로 구축하였으며, 이 도메인 온톨로지를 이용하여 사용자가 선호하는 관광정보를 추천하고, 온톨로지의 클래스들 사이의 관계를 통해 추천된 관광정보와 관련있는 필요한 정보를 추천함으로써 사용자에게 더욱 정확하고 의미적인 정보를 제공할 수 있는 개인화 추천 시스템을 설계하였다.

  • PDF

Recommendation System Using Multi-Strategy Learning. (복수전략 학습을 이용한 추천 시스템)

  • Han, Hyun-Ku;Suh, Euy-Hyun
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.338-339
    • /
    • 2010
  • 사용자가 원하는 정보를 자동으로 찾아내어 제공하는 추천시스템은 최근 사용자의 만족도를 높이기 위해 많은 연구들이 진행되고 있다. 본 논문은 사용자의 프로파일, 음식 주문 내용 및 날씨/온도 등 외부요인을 기반으로 의사 결정나무를 이용하여 개인의 선호도를 분석하고 연관규칙을 이용하여 음식의 연관성을 분석한 후 음식을 추천하는 유연성 있는 개인화 추천시스템을 제안하고 구축하였다. 본 시스템은 복수 전략 학습을 이용하여 추천함으로써 단일 학습방법을 사용했을 때보다 만족도가 높아지는 것을 알 수 있었다.

Personalized Recommendation System Design Using Senior Recognition Response and Online Activity History (시니어 인지반응과 온라인 활동 이력을 활용한 개인화 추천 시스템 설계)

  • Yun, You-Dong;Ji, Hye-Sung;Lim, Heui-Seok
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.587-590
    • /
    • 2016
  • 최근 통신 기술의 발달로 온라인을 통한 대규모 콘텐츠의 유통이 가능해졌으나, 사용자들은 수많은 콘텐츠 사이에서 원하는 정보를 찾는 시간이 단축되는 것을 원했다. 이로 인해 다양한 분야에서 개인화된 콘텐츠를 추천해주는 추천 시스템(recommendation system)에 대한 요구가 점차 높아졌다. 그럼에도 불구하고 시니어를 위한 추천 시스템에 대한 연구는 매우 부족하다. 또한, 시니어 세대의 변화에 따라 시니어 관련 콘텐츠 연구도 다양하게 진행되고 있으나, 스마트 기기 및 서비스가 젊은 층에 친화적으로 개발됨으로써 시니어 층의 접근성을 감소시키고 있다. 이에 본 연구에서는 다양한 신체적 변화를 겪는 시니어 세대 위해 추천 시스템에서 인지반응 데이터를 이용하여 콘텐츠를 시청하기 적합한 환경을 제공함과 동시에 활동 이력을 중심으로 개인화 추천 시스템을 설계하여 시니어 사용자들의 개념 변화(concept drift) 문제로 사용자가 원하지 않는 콘텐츠를 추천받을 가능성을 줄일 수 있도록 한다.

Design and Implementation of the Evaluation System for the User-based Contents Recommendation Systems (콘텐츠 추천 시스템의 객관적 성능평가 지원을 위한 정확도 평가 시스템 설계 및 구현)

  • Kim, Da-Hee;Shin, Sa-Im;Park, Sung-Joo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.343-346
    • /
    • 2012
  • 추천 엔진의 지속적인 성능 향상을 위해서는 객관적 성능 평가가 이루어져야 하지만, 콘텐츠 추천 기술은 평가 데이터 구축이 어렵고 평가를 위한 심도 깊은 연구가 이루어지지 못하여 많은 어려움을 가지고 있다. 본 논문은 콘텐츠 추천 시스템의 객관적인 평가를 시스템 구축에 대한 연구이다. 추천 알고리즘의 효율적이고 객관적인 성능 평가를 위하여 기존 연구들을 분석하여 대표적인 성능평가 양식들을 구현하였다. 통계적인 평가를 위한 사용자 데이터를 수집하였으며 데이터 크기, 평가방식, 추천 알고리즘의 모듈 별 성능 추이를 쉽게 변경하고 관찰할 수 있도록 인터페이스를 설계하였다. 이러한 평가 시스템의 도입으로 콘텐츠 추천 알고리즘의 지속적인 성능 보완을 기대 할 수 있을 것이다.

  • PDF

An Efficient Menu Recommendation System with Data Mining on User Preference (사용자 선호도 기반 데이터마이닝을 통한 효율적인 메뉴 추천 시스템)

  • Park, Byeong-Seok;Kang, Seong-Hun;Cho, Hyun-Woo;Jeong, Young-Sik
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1549-1552
    • /
    • 2015
  • 최근 스마트폰을 비롯한 스마트 디바이스의 급격한 보급화가 이루어짐에 따라 추천가 시스템과 같은 개인화 서비스에 관한 연구가 활발히 진행되고 있다. 그러나 이러한 서비스는 활용 방안이 광범위함에도 불구하고 마케팅 등의 특정 분야에 한정되어 있거나 저수준의 QoS를 제공하는 정도에 머물러 있어 국내의 추천가 시스템은 아직 도입단계에 불과하다. 추천가 시스템은 추천할 물품과 같은 객체의 기본 및 평가 정보를 텍스트 형태의 메타 정보로 나타낸다. 이러한 메타 정보 기반 필터링에 의해 주변 경로 및 취향이 고려되지 않은 결과를 사용자에게 제공하고 있다. 이에 사용자와 상호작용하여 건강이나 취향, 식사 이력, 통계 등을 고려해 메뉴를 추천해주는 최적화된 알고리즘 연구가 요구된다. 본 논문에서는 최적화된 내용 기반 필터링을 활용해 사용자의 입력 패턴과 취향을 파악하여 메뉴를 추천해주는 시스템인 UBRS을 제안하고자 한다.

A Movie Recommendation System using Individual Review and Meta Data (개인 리뷰를 이용한 영화추천 시스템)

  • Kim, Min-Jeong;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1611-1614
    • /
    • 2015
  • 최근 많은 추천 시스템들이 연구 되고 있으며, 사용자들에게 의사결정을 도와주는 추천시스템에 대한 중요도가 급증하고 있다. 기존의 영화 추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 이러한 문제를 보완하고자 사용자가 영화에 대해 남긴 리뷰로부터 영화키워드를 분석하고 분석된 키워드로부터 가중치를 활용한다. 즉 사용자들로부터 영화에 대한 리뷰를 수집하고 리뷰로부터 각 영화 키워드를 분석해 키워드별 가중치를 활용해 이를 기반으로 영화를 추천한다. 그 결과 사용자에게 만족할만한 정보를 제공해 효율성을 높이고, 영화에 대한 개인 리뷰를 반영한 영화추천 시스템을 설계 및 구현해 사용자에게 적절한 영화를 추천한다.

Performance Improvement of a Contents-based Recommendation System by Increasing Movie Metadata (영화 메타데이터의 증가에 따른 콘텐츠 기반 추천 시스템 성능 향상)

  • Seo, Jin-kyeong;Choi, Da-jeong;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.23-26
    • /
    • 2022
  • OTT 서비스의 이용자가 폭발적으로 증가하고 있는 지금, 사용자에게 맞춤형 상품을 추천하는 것은 해당 서비스에서 중요한 사안이다. 본 논문에서는 콘텐츠 기반 추천 시스템의 모델을 제안하고, 영화 데이터를 추가 해가며 예측력을 높일 최종적인 모델을 채택하고자 한다. 이를 위해 GroupLens와 Kaggle에서 영화 데이터를 수집하고 총 1111개의 영화, 943명의 사용자에게서 나온 71026개의 영화 평가 데이터를 이용하였다. 모델 평가 결과, 장르와 키워드만을 이용한 추천 시스템 모델의 RMSE는 1.3076, 단계적으로 데이터를 추가해 최종적으로 장르, 키워드, 배우, 감독, 나라, 제작사를 이용한 추천 시스템 모델의 RMSE는 1.1870으로 모든 데이터를 추가한 모델의 예측력이 더 높았다. 이에 따라 장르, 키워드, 배우, 감독, 나라, 제작사를 이용해 구현한 모델을 최종적인 모델로 채택, 무작위로 추출한 한 명의 사용자에 대한 영화 추천 리스트를 뽑아낸다.

  • PDF

An Adaptive Recommendation System based on User Propensity (사용자 성향 기반 적응형 추천시스템)

  • Taehwan Kim;Seunghwa Lee;Jehwan Oh;Eunseok lee
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.68-71
    • /
    • 2008
  • 웹 상에 정보가 폭발적으로 증가함에 따라 각 사용자에게 맞는 정보를 선별하여 제공하는 개인화 서비스는 매우 중요한 이슈가 되었다. 기존 추천시스템들은 컨텐츠 기반 필터링과 협업 필터링 기법을 기반으로 한다. 그러나 이러한 방법들은 충분히 수집된 사용자 정보를 필요로 하기 때문에, 적절한 추천이 이루어지기 까지 다소 시간이 소요되는 문제를 가지고 있다. 또한 사용자의 성향이 지나치게 편중되는 경우, 사용자의 취향변화를 반영하여 새로운 상품을 추천하는 것은 어렵다. 실제로 사용자들은 웹 사이트의 방문 목적에 따라 개인화된 상품추천을 원하기도 하고, 많은 사용자들에게 인기 있는 상품을 원하기도 한다. 본 논문에서는 사용자의 행동분석을 기반으로, 협업 필터링을 기반으로 하는 개인화된 추천과 다수의 사용자들에게 공통적으로 인기 있는 상품의 추천 비율을 동적으로 조합하여 최종 추천 상품들을 선별하는 새로운 적응형 추천 시스템을 제안한다. 본 논문에서는 MovieLens의 데이터 셋을 이용하여 기존 추천기법들과 추천결과에 대한 정확도를 비교 실험하였으며, 보다 높은 정확도를 보이는 실험결과를 통해 제안시스템의 유효성을 확인하였다.