• Title/Summary/Keyword: 추천 시스템

Search Result 1,752, Processing Time 0.037 seconds

Recommendation System using Baysian Network in IoT Environment (IoT 환경에서의 베이지안 네트워크를 이용한 추천시스템)

  • Jeong, Soo-Yeon;Kim, Young-Kuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.125-127
    • /
    • 2016
  • 본 논문에서는 IoT(Internet of Things) Device와 스마트폰을 이용하여 사용자의 상황을 인지하고 상황에 적합한 상품을 추천하는 추천시스템을 제안한다. 기존 추천시스템과 다르게 제안하는 IoT 환경에서의 추천시스템은 IoT Device와 스마트폰에서 얻을 수 있는 날씨, 위치, 사용자 정보 등을 파악하여 추천하는 것으로 다양하고 많은 데이터를 제공하므로 정확도를 높일 수 있다. 베이지안 네트워크(BN, Bayesian Network)는 불확실성을 효율적으로 관리하고 정확도와 실시간성을 높일 수 있는 방법으로, 상품의 특징에 따라 종류를 분류하여 추론하고 선호도가 높은 상품의 종류를 추천하는 시스템을 제안한다.

  • PDF

Simulation Study on E-commerce Recommendation System (전자상거래 추천자 시스템에 대한 분석)

  • Kwon Chi-myung
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.56-62
    • /
    • 2005
  • 추천자 시스템은 E-commerce 사이트에서 소비자가 관심을 가지는 상품에 대한 정보를 수집하여 소비자가 구매할 것으로 예상되는 상품을 추천하는 목적으로 개발되었다. 추천자 시스템을 구축하여 성공적으로 활용하기 위해서 해결해야 할 과제로 취급 상품이 대량인 경우에 알고리즘의 효율성 문제라고 볼 수 있는데 본 연구는 문서 검색에서 사용되는 LSI(latent semantic indexing) 분석법을 이용하여 추천자 시스템을 개선하는 방안을 연구하고자 한다. LSI 분석법을 이용하여 고객-상품 구매행렬에서 고객이 상품을 구매하는 경향을 효과적으로 파악할 수 있다면 목표고객에 대한 인접고객군을 생성하는 계산 노력은 현저히 감소되어 추천자 알고리즘이 실시간으로 고객 데이터베이스로부터 많은 인접 고객을 효율적으로 검색할 수 있을 것으로 기대된다. 본 연구는 E-commerce 사이트로부터 얻는 실제적인 고객 자료와 유사한 자료를 시뮬레이션을 통하여 재생하고 이를 바탕으로 LSI에 의한 추천자 시스템의 효율성을 분석하고자 한다.

  • PDF

Multi-Modal Recommendation System for Web Novels (멀티 모달 딥러닝을 활용한 웹소설 추천 시스템)

  • Mi Ryeo Kim;Hyon Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.552-554
    • /
    • 2023
  • 웹소설 시장의 성장에 따라 웹소설 추천 시스템의 중요성이 높아지고 있다. 본 연구에서는 작품의 특성 및 선호도를 나타낼 수 있는 다양한 데이터를 활용하여 추천시스템을 구현하고 그 성능을 평가하여 표지 이미지와 작품 특성을 모두 고려한 멀티 모달 추천 시스템이 가장 효율적임을 보여주었다. 연구 결과, 단일 변수 추천에서는 작품 소개글과 표지 이미지 기반 추천이 가장 좋은 성능을 보였고, 멀티 모달 추천 시스템에서는 작품 소개글, 이미지, 키워드 순으로 성능에 좋은 영향을 끼치는 것으로 나타났다. 이번 연구 결과는 한국콘텐츠진흥원에서 조사한 웹소설 이용자 실태조사와는 조금 다른 결과를 보여주었다. 설문조사에서는 인기도를 웹소설 선택 시 가장 중요한 영향으로 봤으나, 본 연구에서는 작품 소개글이 가장 중요한 영향을 미친다는 결과가 나타났다. 이러한 연구 결과는 웹소설 추천 시스템의 개발과 운영에 있어서 중요한 참고 자료가 될 것으로 예상된다.

Enhancing Method of Collaborative Filtering using Item-Based Trust (아이템 기반의 신뢰도를 이용한 효율적인 협력적 여과 방법)

  • Ji Ae-ttie;Kim Heung-Nam;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.661-663
    • /
    • 2005
  • 상업적인 추천 시스템에서 폭넓게 사용되고 있는 사용자 기반의 협력적 여과 방법 (User-Based Collaborative Filtering)은 확장성과 실시간 성능에 관련된 많은 제약을 갖는다. 이와 같은 맹점을 해결하기 위해 제안된 모델 기반의 협력적 여과 방법 (Model-Based Collaborative Filtering)은 추천은 매우 빠르지만, 모델을 구축하는 데 많은 시간이 소요되며, 사용자 기반의 협력적 여과 방법에 비해 추천의 질이 떨어지는 경향이 있다. 또한, 과거에 추천되있던 히스토리를 바탕으로 한 신뢰도 정보를 고려하는 추천 시스템은 추천의 정확도를 향상시키기 위한 다양한 연구 가운데 하나이다. 본 논문에서는 사용자 기반의 협력적 여과 방법의 문제점을 개선하고 추천의 정확도를 높이기 위해, 유사한 아이템의 모델을 미리 구축하는 아이템 기반의 협력적 여과 방법 (Item-Based Collaborative Filtering)에 각 아이템의 추천에 대한 신뢰도를 고려하여 보다 효율적인 추천 시스템을 제안하고자 한다. 또한, 기존 추천 시스템과의 성능 비교 실험을 통해 제안한 방법의 타당성을 제시한다.

  • PDF

Development Trend Analysis of the Research on Recommendation System (추천시스템 연구의 개발추세 동향)

  • Lee, Yon-Nim;Kwon, Oh-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.63-82
    • /
    • 2008
  • Recommendation systems are widely used to help deal with the problem of information overload. Over the past decades, a variety of recommendation systems have been developed as the amount of information in the world increases far more quickly than our ability to process it. This paper aims to analyze existing developed recommendation systems, provide systemic review, and present some basic issues on improvement action. Through this, we also suggest useful implications for better recommendation systems and give some ideas to recommendation system developers to improve their system. Especially, this study focuses on researches on recommendation system. In our research, we analyze the studies along with four different keys dimensions : their domain, objective, underlying model, and evaluation method of recommendation systems and portray the results as statistics or statistical graphics or table form.

  • PDF

A personalized recommender system using genetic algorithms (유전자 알고리즘을 활용한 개인화된 상품추천시스템 개발)

  • 김병국;김경재
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.657-660
    • /
    • 2004
  • 규칙기반의 상품추천시스템은 많은 인터넷 쇼핑몰에서 활용되고 있지만 규칙을 추출할 수 있는 마케팅 전문가 확보와 방대한 양의 고객 데이터 처리의 어려움으로 유용한 규칙을 찾는 것이 매우 어렵다. 본 연구에서는 이러한 규칙기반 상품추천시스템의 단점을 보완할 수 있는 방법으로 전역 최적화 기법의 하나인 유전자 알고리즘을 활용하여 고객정보를 토대로 추천 규칙을 도출할 수 있는 방안을 제시한다. 또한 본 연구에서 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF

A Study on Scientific Article Recommendation System with User Profile Applying TPIPF (TPIPF로 계산된 이용자프로파일을 적용한 논문추천시스템에 대한 연구)

  • Zhang, Lingling;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.1
    • /
    • pp.317-336
    • /
    • 2016
  • Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users' needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF

Design and Development of a Personalized News Recommendation System (개인 맞춤형 뉴스 추천 시스템의 설계 및 개발)

  • Yu, YoungSeo;Lee, Jimin;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.599-602
    • /
    • 2016
  • 실시간으로 뉴스 기사를 제공하는 온라인 뉴스 시스템이 널리 사용되면서, 사람들은 매 순간 속보와 새로운 뉴스 등 대량의 뉴스 기사에 노출되어 있다. 하지만 방대한 뉴스들로부터 사용자가 원하는 뉴스를 찾는 것은 매우 어려운 일이다. 따라서 개인 관심사에 따라 뉴스를 추천해주는 개인 맞춤형 뉴스 추천 시스템의 필요성이 증가되고 있다. 본 논문에서는 사용자의 관심사를 분석하여, 사용자의 관심사에 따라 관련된 뉴스를 자동으로 추천해주는 뉴스 추천 시스템을 설계 및 개발한다. 제안 시스템은 각 사용자가 북마크한 뉴스 기사와 읽은 뉴스 기사를 클러스터링하여 사용자별 프로파일을 생성한다. 또한 전체 뉴스 기사들을 클러스터링하여 주제 별로 분류한다. 사용자에게 뉴스를 추천하기 위해, 제안 시스템은 해당 사용자 프로파일에 포함된 각 클러스터에 대해 전체 뉴스 기사에 대한 클러스터들 중 가장 가까운 클러스터를 찾아 해당 클러스터 내의 뉴스 기사들을 거리 순으로 추천한다. 실제 구현된 시스템을 통해, 제안한 뉴스 추천 시스템이 각 개인에게 뉴스를 효과적으로 추천함을 보인다.