• 제목/요약/키워드: 추천 모델

검색결과 582건 처리시간 0.032초

협력적 추천을 위한 효율적인 통합 방법 (Efficient Combining Methods for a Collaborative Recommendation)

  • 도영아;김종수;류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.130-132
    • /
    • 2001
  • 신경망을 이용한 추천 기술은 항목이나 사용자간의 가중치를 학습할 수 있고, 자료 유형에 상관없이 데이터 처리가 용이하다. 또한 최근 연구를 통해서 그 우수성이 입증되고 있다. 그러나 사용자간의 상관관계로 추천하는 사용자 신경망 모델과 항목간의 상관관계로 추천하는 항목 신경망 모델이 서로 다른 관점으로 다른 선호도를 제시한 경우에 선택한 모델의 선호도에 따라 시스템의 성능이 좌우된다. 그러므로 효율적이고 성능이 우수한 추천 시스템을 위해 사용자와 항목 신경망 모델의 통합 방법을 제안한다. 두 모델 사이에 우선 순위를 결정하여 통합하는 순차적 통합 방법과 두 모델을 동시에 고려하는 병렬적 통합방법을 제안한다. 그러나 두 통합 방법은 선호도 예측 기준에 있어서 정적이고, 문제에 대한 적응성이 없다. 그러므로 신경망(퍼셉트론, 다층 퍼셉트론)을 이용한 통합 방법을 제안한다. 또한 퍼지의 소속함수를 이용하여 퍼지 추론를 적용한 통합 방법을 제안하고, 패턴 인식 분야에서 사용하는 BKS 방법을 적응하여 두 신경망 모델을 통합하여 실험한다. 본 논문에서는 사용자와 항목 신경망 모델을 통합함으로써 기존의 추천 기술인 연관 규칙과 단일 신경망 모델을 이용한 추천보다 우수함을 보이고 있다.

  • PDF

영화 메타데이터의 증가에 따른 콘텐츠 기반 추천 시스템 성능 향상 (Performance Improvement of a Contents-based Recommendation System by Increasing Movie Metadata)

  • 서진경;최다정;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.23-26
    • /
    • 2022
  • OTT 서비스의 이용자가 폭발적으로 증가하고 있는 지금, 사용자에게 맞춤형 상품을 추천하는 것은 해당 서비스에서 중요한 사안이다. 본 논문에서는 콘텐츠 기반 추천 시스템의 모델을 제안하고, 영화 데이터를 추가 해가며 예측력을 높일 최종적인 모델을 채택하고자 한다. 이를 위해 GroupLens와 Kaggle에서 영화 데이터를 수집하고 총 1111개의 영화, 943명의 사용자에게서 나온 71026개의 영화 평가 데이터를 이용하였다. 모델 평가 결과, 장르와 키워드만을 이용한 추천 시스템 모델의 RMSE는 1.3076, 단계적으로 데이터를 추가해 최종적으로 장르, 키워드, 배우, 감독, 나라, 제작사를 이용한 추천 시스템 모델의 RMSE는 1.1870으로 모든 데이터를 추가한 모델의 예측력이 더 높았다. 이에 따라 장르, 키워드, 배우, 감독, 나라, 제작사를 이용해 구현한 모델을 최종적인 모델로 채택, 무작위로 추출한 한 명의 사용자에 대한 영화 추천 리스트를 뽑아낸다.

  • PDF

이미지 비유사도 기반의 개인화된 하이브리드 의류 추천 모델 (Personalized Hybrid Outfit Recommendation Based on Image Dissimilarity)

  • 양정원;백지혜;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.459-460
    • /
    • 2023
  • 기존의 추천시스템은 상품간 혹은 사용자 간의 유사도를 기반으로 작동한다. 하지만 이는 사용자가 유사한 상품 추천 속에 갇히게 되는 필터 버블의 문제와 추천시스템의 고질적인 문제인 데이터 희소성 문제를 피할 수 없게 된다. 따라서 본 연구에서는 사용자의 취향과 체형 정보를 반영하여 사용자의 평점을 예측하는 협업 필터링 기반 딥러닝 추천과 상품간 비유사성을 고려하여 사용자의 평점을 예측하는 내용 기반 추천을 혼합한 하이브리드 추천 모델을 구축하여 기존 추천시스템의 문제점을 해결하였다. 모델의 성능평가를 위해 인터넷 의류 쇼핑몰을 대상으로 유사한 이미지를 활용한 하이브리드 추천 모델과 NDCG 값을 비교하였고 유사도가 낮은 이미지를 활용한 모델이 더 우수한 성능을 보였다. 이는 다른 제품과는 달리 소비자가 의류를 구매할 경우 이미 구매한 상품과 유사한 상품보다는 유사하지 않은 상품을 구매할 가능성이 크다는 것을 보여준다.

증강 그래프 기반 그래프 뉴럴 네트워크를 활용한 POI 추천 모델 (Next POI Recommendation based on Graph Neural Network of Augmented Graph)

  • 정현지;장광선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.16-18
    • /
    • 2023
  • 본 연구는 궤적 데이터(trajectory data)를 대상으로 증강 그래프 기반의 그래프 뉴럴 네트워크를 활용하여 다음에 방문한 장소를 추천하는 모델을 제안한다. 제안 모델은 전체 궤적 데이터를 그래프로 표현하여 추출한 글로벌 궤적 플로우의 특성을 다음 방문할 POI 추천에 활용한다. 이때, POI 추천시 자주 발생하는 두 가지 문제를 추가로 해결함으로써 POI 추천의 정확도를 높이는 것을 목표로 한다. 첫 번째 문제는 추천 대상 궤적 데이터의 길이가 짧은 경우에 성능 저하가 발생한다는 것이다. 두 번째 문제는 콜드-스타트 문제이다. 기존 POI 추천 모델은 매우 적은 방문 기록만 가지는 사용자 또는 POI에 대해서는 매우 낮은 예측 성능을 보인다. 본 연구에서는 궤적 그래프에서 일부 엣지를 삭제하여 생성한 증강 그래프 기반의 궤적 플로우 특징 기반 모델을 제안함으로써 짧은 길이의 궤적 데이터 및 콜드-스타트 사용자/POI에 대한 추천 성능을 높인다.

협력적 추천을 위한 사용자와 항목 모델의 효율적인 통합 방법 ((Efficient Methods for Combining User and Article Models for Collaborative Recommendation))

  • 도영아;김종수;류정우;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.540-549
    • /
    • 2003
  • 협력적 추천에서는 일반적으로 사용자 모델과 항목 모델이 사용되어진다. 사용자 모델은 사용자들간의 선호도 상관관계를 학습하고, 추천하고자 하는 항목에 대한 다른 사용자들의 선호도를 기반으로 그 항목을 추천한다. 이와 유사한 방식으로 항목 모델은 항목들간의 선호도 상관관계를 학습하고, 다른 항목들간의 선호도를 기반으로 추천 받는 사용자에게 항목을 추천한다. 본 논문에서는 추천 성능의 향상을 위해서 사용자 모델과 항목 모델간의 다양한 통합 방법을 제안한다. 제안하는 통합 방법으로는 순차적, 병렬적 통합 방법, 퍼셉트론 또는 다층 퍼셉트론을 이용한 통합 방법, 퍼지 규칙을 이용한 통합 방법 그리고 BKS를 적용한 방법이다. 본 실험에서는 통합 모델을 위해서 다층 퍼셉트론을 이용하여 사용자와 항목 모델을 각각 학습한다. 다층 퍼셉트론은 최근접 이웃방법이나 연관 규칙을 이용한 방법과 같은 기존의 추천 방법보다 연관된 항목들간의 가중치를 학습할 수 있고, 기호 데이타와 수치 데이타를 쉽게 처리할 수 있는 장점이 있다. 본 논문에서는 통합된 모델이 어떠한 단일 모델보다도 우수하고, 실험을 통하여 다층 퍼셉트론을 이용한 통합 방법이 다른 통합 방법보다 효율적인 통합 방법임을 보여주고 있다.

추천 시스템에서의 선형 모델과 비선형 모델의 성능 비교 연구 (Study Comparing the Performance of Linear and Non-linear Models in Recommendation Systems)

  • 성다훈;임유진
    • 정보처리학회 논문지
    • /
    • 제13권8호
    • /
    • pp.388-394
    • /
    • 2024
  • 추천 시스템은 기업의 매출 증가로 이어질 만큼 핵심적인 역할을 하기에 추천 시스템에 대한 연구는 과거부터 다양한 접근법과 모델들이 연구되어왔다. 그러나 이러한 다양성으로 인해 추천 시스템의 종류 또한 복잡하게 구성되고 있어 추천 모델을 선택하는 데 어려움이 따른다. 따라서 본 연구는 추천 시스템에서 적절한 추천 모델 선택의 어려움을 해결하고자, 다양한 추천 모델을 구분하는 통합적인 기준을 제공하고, 통일된 환경에서 이들의 성능을 비교 평가하였다. 실험은 MovieLens와 Coursera 데이터셋을 활용하였으며, 선형 모델(ADMM-SLIM, EASER, LightGCN)과 비선형 모델(Caser, BERT4Rec)을 HR@10과 NDCG@10 지표를 통해 성능을 평가하였다. 본 연구는 연구진과 실무자들에게 데이터셋 특성과 추천 상황에 맞는 최적의 모델을 선택하는 데 유용한 정보를 제공할 것이다.

상이한 아이템에 대한 사용자 선호도 활용 LOCA 접근 방법 연구 (Research of LOCA-Based Approach Applied to Users' Preferences on Items in Different Domains)

  • 백주련;고광호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.59-60
    • /
    • 2022
  • 갈수록 개인화되어 가는 추천시스템은 다양한 모델에 의해 그 성능이 향상되고 있으며 최근 추세는 다른 분야와 마찬가지로 딥러닝 기반 모델을 적용하여 추천 품질을 향상하고 있다. 그러나 대다수의 추천시스템은 하나의 도메인에서 개별적으로 사용될 뿐, 유사도메인이나 상이한 도메인이나 모두 다른 도메인에서의 사용자 성향이나 아이템 유사성을 거의 또는 전혀 고려하지 않고 있다. 이는 추천결과의 sparsity와 cold-start 문제를 더 악화시키는 원인이 된다. 본 논문은 다양한 딥러닝 모델 적용 추천 모델 중 오토인코더 모델을 지역특화 협업에 적용한 모델을 간략하게 소개하고 해당 모델을 상이한 도메인 간의 적용하기 위한 첫 단계로 손실함수 부분에 대해 개념적으로 설명하고자 한다.

  • PDF

은닉 변수 모델을 이용한 문서 추천 (Learning Model for Recommendation of Humor Documents)

  • 이종우;장병탁
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.514-519
    • /
    • 2002
  • 우리는 유머문서의 추천을 위해서 문서 정보, 사용자 정보, 공통 등급매김 정보 등을 모두 이용하는 4 개의 관찰 변수와 이들간 관계의 학습을 위한 은닉변수를 사용한 확률모델을 구축하였다. 이 모델은 학습된 은닉 변수와 가시 변수 간의 관계를 통해 누락 관찰 데이터에 대해서도 추정값을 유도해 낼 수 있으므로 등급매김 정보가 부족하거나 새로운 사용자와 문서의 도입시에 안정적인 추천 성능을 보여 줄 수가 있다. 또한 확률 모델의 학습을 위해서 EMl 알고리즘을 이용하였는데 저평가된 데이터의 이용도를 높이기 위해서 추천을 반대하는 확률 모델을 따로 두고 이들간에 분류모델(classification model)을 두어서 추정값을 분류해내는 방식을 취한다.

  • PDF

추천 분야에서의 지식 그래프 기반 어텐션 네트워크 모델 성능 향상 기법 연구 (A Study on Augmentation Method for Improving the Performance of the Knowledge Graph Based Attention Network Model)

  • 김경태;민찬욱;김진우;안진현;전희국;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.603-605
    • /
    • 2022
  • 추천시스템은 개개인의 성향에 따른 맞춤화 추천이 가능하기 때문에 음악, 영상, 뉴스 등 많은 분야에서 관심을 받고 있다. 일반적인 추천시스템 모델은 블랙박스 모델이기 때문에 추천 결과에 따른 원인 도출을 할 수 없다. 하지만 XAI 의 모델은 이러한 블랙박스 모델의 단점을 해결하고자 제안되었다. 그 중 KGAT 는 Attention Score 를 기반으로 추천 결과에 따른 원인을 알 수 있다. 이와 같은 AI, XAI 등의 딥 러닝 모델에서 각각의 활성화 함수는 상황에 따라 상이한 성능을 나타낸다. 이러한 이유로 인해 데이터에 맞는 활성화 함수를 적용해보는 다양한 시도가 필요하다. 따라서 본 논문은 XAI 추천시스템 모델인 KGAT 의 성능 개선을 위해 여러 활성화 함수를 적용해보고, 실험을 통해 수정한 모델의 성능이 개선됨을 보인다.

추천 시스템에서의 선형 모델과 딥러닝 모델의 데이터 크기에 따른 성능 비교 연구 (A Study Comparing the Performance of Linear and Deep Learning Models in Recommender Systems as a Function of Data Size)

  • 성다훈;임유진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.715-718
    • /
    • 2024
  • 추천 시스템을 통해 사용자의 만족도를 높여 매출 증대까지 기대할 수 있기에, 추천 시스템은 과거부터 활발하게 연구되어 왔다. 추천 시스템은 크게 선형 모델과 비선형 모델로 구분할 수 있는데, 각 모델이 주로 독자적으로 연구되어 통합된 성능 결과를 명확히 알 수 없는 경우가 많아, 두 모델 간 특성 차이를 명확히 파악하여 추천 상황에서 적합한 모델을 선택하기 어려운 문제가 있다. 따라서 본 연구에서는 선형 모델과 비선형 모델을 같은 데이터와 같은 환경, 같은 성능평가 지표로 실험하여 결과를 비교 및 분석해보고자 한다.