• Title/Summary/Keyword: 추천서비스 활용도

Search Result 415, Processing Time 0.095 seconds

Member Organization-based Service Recommendation for User Groups in Internet of Things Environments (사물 인터넷 환경에서의 그룹 사용자를 위한 그룹 구성 정보 기반 서비스 추천 방법)

  • Lee, Jin-Seo;Ko, In-Young
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.786-794
    • /
    • 2016
  • Recommender systems can be used to assist users in selecting required services for their tasks in Internet of Things (IoT) environments in which diverse services can be provided by utilizing IoT devices. Traditional research on recommendation mainly focuses on predicting preferences of individual users. However, in IoT environments, not only individual users but also groups of users can access services in the environments. In this study, we analyzed user groups' preferences on services and developed service recommendation approach for new groups that do not have a history of accessing IoT-services in a certain place. Our approach extends the traditional user-based collaborative filtering by considering the similarity between user groups based on their member organization. We conducted experiments with a real-world dataset collected from IoT testbed environments. The results demonstrate that the proposed approach is effective to recommend services to new user groups in IoT environments.

Analysis Product Recommendation Service Using Image-Based AI Skin Color Detecting Technology (이미지 기반 AI 피부 컬러 측정 기술 및 서비스 적용에 관한 고찰)

  • Park, Hakgwon;Lim, Young-Hwan;Lin, Bin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.501-506
    • /
    • 2022
  • The prolonged of the Post Corona, many Cosmetic company launched various online services. In this paper, consider about the quality of product recommendation using personal color detecting technology. Using the detecting tool which is most widely used by cosmetic company. we will do a lot of testing with this tool and also testing with color detecting equipment. For precise experimental results, it was conducted in a consistent experimental environment. This experiment can be a foundation that can be well used for the expansion of personalized product recommendation services according to the current image-based skin color measurement.

Implementation of a pet product recommendation system using big data (빅 데이터를 활용한 애완동물 상품 추천 시스템 구현)

  • Kim, Sam-Taek
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.19-24
    • /
    • 2020
  • Recently, due to the rapid increase of pets, there is a need for an integrated pet-related personalized product recommendation service such as feed recommendation using a health status check of pets and various collected data. This paper implements a product recommendation system that can perform various personalized services such as collection, pre-processing, analysis, and management of pet-related data using big data. First, the sensor information worn by pets, customer purchase patterns, and SNS information are collected and stored in a database, and a platform capable of customized personalized recommendation services such as feed production and pet health management is implemented using statistical analysis. The platform can provide information to customers by outputting similarity product information about the product to be analyzed and information, and finally outputting the result of recommendation analysis.

A Study on User behavior-based multi-attribute attitude models and based on cross-correlation (사용자 행동 기반 다속성 태도 모델 기반의 유사도 측정 연구)

  • Ahn, Byung-IK;Jung, Ku-Imm;Choi, Hae-Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.554-557
    • /
    • 2016
  • 2015년 우리나라 스마트폰 보급률이 83%에 다다르고 인터넷 정보 검색은 PC보다 모바일이 추월한지 오래다. 범람하는 정보 안에서 편하고 빠른 것에 익숙해진 사용자들은 이제 개인화된 맞춤형 추천 정보의 제공을 원한다. 맞춤형 추천을 위해서는 사용자의 행동을 이해하고 추천하는 것이 필요하다. 현재 대중화된 개인 추천 서비스는 책과 영화가 있는데 생활에 많은 부분을 차지하고 있는 음식점 방문에 대해서도 맞춤형 추천 서비스를 제공해 줄 수 있다. 본 논문에서는 음식점 방문에 대한 비슷한 태도를 보인 사용자를 추출한 후 방문했던 장소를 비교하여 추천하는 사용자 행동 기반 다속성 태도 모델 기반의 장소 추천 모델을 연구한다. 다속성 태도점수를 산출하기 위해 피쉬바인(Fishbein) 방정식을 활용하고 피어슨 상관계수를 이용하여 사용자들간의 유사한 장소를 추출했다. 그리고 그룹렌즈의 선호도 예측 알고리즘을 활용하여 추천 대상 장소를 선정하고 유클라디안 거리법으로 사용자의 거리기반 장소를 추천하였다. 또한 본 논문에서는 실제 데이터를 이용한 실험을 통해 본 논문에서 제시한 시스템의 우수성도 입증하였다.

Web Service based Recommendation System using Inference Engine (추론엔진을 활용한 웹서비스 기반 추천 시스템)

  • Kim SungTae;Park SooMin;Yang JungJin
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.59-72
    • /
    • 2004
  • The range of Internet usage is drastically broadened and diversed from information retrieval and collection to many different functions. Contrasting to the increase of Internet use, the efficiency of finding necessary information is decreased. Therefore, the need of information system which provides customized information is emerged. Our research proposes Web Service based recommendation system which employes inference engine to find and recommend the most appropriate products for users. Web applications in present provide useful information for users while they still carry the problem of overcoming different platforms and distributed computing environment. The need of standardized and systematic approach is necessary for easier communication and coherent system development through heterogeneous environments. Web Service is programming language independent and improves interoperability by describing, deploying, and executing modularized applications through network. The paper focuses on developing Web Service based recommendation system which will provide benchmarks of Web Service realization. It is done by integrating inference engine where the dynamics of information and user preferences are taken into account.

  • PDF

Analysis of Emotions in Lyrics by Combining Deep Learning BERT and Emotional Lexicon (딥러닝 모델(BERT)과 감정 어휘 사전을 결합한 음원 가사 감정 분석)

  • Yoon, Kyung Seob;Oh, Jong Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.471-474
    • /
    • 2022
  • 음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.

  • PDF

Development of a Recommendation System for Crowdfunding Using NLP in Short Text (단문 텍스트의 자연어 처리 기법을 통한 크라우드 펀딩 추천 시스템 개발)

  • Lee, Yeong-Ah;Lee, Sun-Myung;Lee, Ju-Yon;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.466-469
    • /
    • 2021
  • 최근 자연어 처리에 대한 관심이 증가함에 따라 자연어 처리 기술을 활용한 다양한 추천 시스템이 등장하고 있다. 본 논문에서는 자연어 처리를 이용한 서비스를 개발한다. 본 논문에서 개발한 서비스는 KoNLPy 와 Word2Vec 을 이용하여 크라우드 펀딩 프로젝트 창작자 및 후원자에게 키워드 및 키워드와 유사한 단어가 제목에 포함되는 프로젝트를 추천해준다. 단문 텍스트로서 프로젝트 제목을 사용하여 데이터를 자연어 처리 한 후, 딥러닝 모델에 적용시켜 추출한 데이터를 기반으로 창작자와 후원자에게 추천해주는 방식이다. 따라서 본 서비스는 프로젝트 제목 정보를 통한 추천 시스템의 개발로, 나아가 영화, 도서와 같은 콘텐츠 추천 분야에도 적용할 수 있을 것으로 기대한다.

A Design of Multimedia Content Recommendation for Mobile Synchronization on Distributed System(P2P) (분산 P2P 환경에서 모바일 동기화 서비스를 통한 멀티미디어 콘텐츠 추천 시스템의 설계)

  • Kim, Ryong;Kim, Byeong-Man;Kim, Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.390-393
    • /
    • 2007
  • 사용자들은 분산 P2P 환경을 통해 대량의 멀티미디어 콘텐츠를 쉽게 제공 밭을 수 있는 환경이 되었다. 또한 고용량 모바일 기기의 발전과 보급이 확산됨에 따라 사용자들은 사진, 음악, 동영상과 같은 멀티미디어 콘텐츠를 대량으로 휴대하며 이용할 수 있게 되었다. 그러나, 이러한 대량의 멀티미디어 콘텐츠 관리는 사용자 각자에게 맡겨져 있어 콘텐츠 관리를 어렵게 하고 있는 현실이다. 본 논문에서는 분산 P2P 환경에서 멀티미디어 콘텐츠의 공유와 추천을 통해 사용자에게 적합한 콘텐츠를 제공하고, 제공된 콘텐츠는 모바일 동기화 서비스를 통해 모바일 기기로 저장하고 관리되는 #분산 P2P 환경에서 모바일 동기화 서비스를 통한 멀티미디어 콘텐츠 추천 시스템#을 설계하고 실험하였다. 제안된 시스템은 사용자 선호 프로파일 정보로 협업 필터링을 통해 분산 P2P 환경에서 공유된 멀티미디어 콘텐츠 중에서 적합한 콘텐츠를 추천해 주고, 추천된 콘텐츠는 푸쉬 서비스를 통해 모바일 기기로 저장되며. 모바일 기기 사용자의 행동에 따라 모바일 동기화 서비스를 통해 사용자 모바일 기기의 콘텐츠를 관리한다. 이처럼 제안된 시스템은 콘텐츠 추천과 모바일 동기화 서비스로 능동적인 콘텐츠 관리를 제공하여 사용자에게 효율적인 콘텐츠 관리 기법과 활용 방법을 제공 할 수 있다.

  • PDF

ETF Recommendation Service through AI RoboAdvisor (AI 로보어드바이저를 통한 ETF 추천 서비스)

  • Lee, Eun-Ju;Park, Seol-Ha;Lee, Seung-Jun;Lee, Ye-Ryung;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1059-1062
    • /
    • 2021
  • 투자에 대한 관심 증가에 따라 적은 비용과 시간으로 객관적인 정보 제공의 필요성 증가와 함께 인공지능 기술을 활용한 로보어드바이저 서비스가 확대되었다. 또한, 최근 ETF 를 통한 안정적인 투자에 대한 선호도가 증가함에 따라 ETF 중심의 AI 로보어드바이저 추천 서비스가 필요할 것으로 보인다. 하지만, 기존의 투자 어플리케이션에서는 뉴스 기반의 감성적인 요인이 반영되지 않은 추천 방식으로 주가에 영향을 미치는 다양한 요인들을 고려하지 못하는 문제점이 있다. 이에 본 연구에서는 뉴스의 감성분석을 통한 감성지수를 기반으로 새로운 주가 예측 모델을 제안하고, 사용자의 투자 성향 분석을 통한 맞춤 추천 서비스를 통해 개인화된 ETF 서비스를 제공한다.

Pet Shop Recommendation System based on Implicit Feedback (암묵적 피드백 기반 반려동물 용품 추천 시스템)

  • Choi, Heeyoul;Kang, Yunhee;Kang, Myungju
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1561-1566
    • /
    • 2017
  • Due to the advances in machine learning and artificial intelligence technologies, many new services have become available. Among such services, recommendation systems have already been successfully applied to commercial services and made profits as in online shopping malls. Most recommendation algorithms in commercial services are based on content analysis or explicit feedback rates as in movie recommendations. However, many online shopping malls have difficulties in content analysis or are lacking explicit feedbacks on their items, which results in no recommendation system for their items. Even for such service systems, user log data is easily available, and if recommendations are possible with such log data, the quality of their service can be improved. In this paper, we extract implicit feedback like click information for items from log data and provide a recommendation system based on the implicit feedback. The proposed system is applied to a real in-service online shopping mall.