Annual Conference on Human and Language Technology
/
2010.10a
/
pp.42-45
/
2010
본 연구에서는 한국의 대중가요의 가사 정보를 형태소 단위로 분석하고 이 정보를 기반으로 노래의 감정을 분류하여 추천하는 시스템을 제안한다. 이 시스템을 구축하기 위해서 수집된 노래의 가사는 형태소를 분석하여 각 형태소를 자질로 결정하고, 사용되는 분류기는 ME 모델을 이용해서 학습된다. 이 학습된 분류기는 자질의 수에 따라 그 성능이 분석되고, 분류기를 사용한 추천 시스템은 랜덤하게 생성된 데이터 집합에 대해서 얼마나 정확하게 노래를 추천하는 지를 분석한다.
Collaborative Filtering is limited because of the cost that is required to perform the recommendation (such as the time complexity and space complexity). The RFWBP (Rating Frequency Weight-based Baseline Predictor) that approximates the precision of the existing methods is one of the efficiency methods to reduce the cost. But, the following issues need to be considered regarding the RFWBP: 1) It does not reduce the error because the RFWBP does not learn for the recommendation, and 2) it recommends all of the items because there is no condition for an appropriate recommendation list when only the RFWBP is used for the achievement of efficiency. In this paper, the BBP (Bias-Based Predictor) is proposed to solve these problems. The BBP reduces the error range, and it determines some of the cases to make an appropriate recommendation list, thereby forging a recommendation list for each case.
Recommendation systems are widely used to help deal with the problem of information overload. Over the past decades, a variety of recommendation systems have been developed as the amount of information in the world increases far more quickly than our ability to process it. This paper aims to analyze existing developed recommendation systems, provide systemic review, and present some basic issues on improvement action. Through this, we also suggest useful implications for better recommendation systems and give some ideas to recommendation system developers to improve their system. Especially, this study focuses on researches on recommendation system. In our research, we analyze the studies along with four different keys dimensions : their domain, objective, underlying model, and evaluation method of recommendation systems and portray the results as statistics or statistical graphics or table form.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.243-246
/
2011
학습자의 감성 상태가 충분히 반영되는 오프라인 수업과 달리 지금까지 대부분의 e-러닝은 학습자의 감성 정보를 수업에 효과적으로 반영하지 못했다. 이러한 한계점은 e-러닝의 학습 효과성을 저해하는 문제 중 하나로 지적되었다. 이 문제를 해결하기 위해 학습자의 뇌파를 통해 감성을 인식하고 감성 상태에 따라 적절한 학습 콘텐츠 타입을 추천하여 학습 효과를 증대 시킬 수 있는 방법론이 주목을 받고 있다. 본 논문에서는 기 수집된 학습자들의 감성(뇌파) 데이터를 분석하여 콘텐츠 타입 선호도를 파악한 후 프로파일 데이터를 활용하여 상관계수 기반 NN-Recommendation 학습 콘텐츠 타입 추천 시스템을 제안 하고자 한다. 이 시스템은 일반적인 추천시스템에서 발생하는 Cold-start 문제를 해결할 수 있으며 특히 본 연구에서는 보다나은 추천 정확도를 위해 프로파일 각 속성에 자동적으로 가중치를 부여하는 기법을 제시하여 향상된 성능을 보이게 됨을 실험을 통해 확인 하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.5
/
pp.624-629
/
2011
In this paper, a new kernelized approach for use in a recommender system (RS) is proposed. Using a machine learning technique, the proposed method predicts the user's preferences for unknown items and recommends items which are likely to be preferred by the user. Since the ratings of the users are generally inconsistent and noisy, a robust binary classifier called a dual margin Lagrangian support vector machine (DMLSVM) is employed to suppress the noise. The proposed method is applied to MovieLens databases, and its effectiveness is demonstrated via simulations.
본 논문에서는 웹 및 문자 공지문을 자동으로 분류하고 추천함으로써 사용자가 원하는 공지문만을 볼 수 있도록 하는 애플리케이션을 개발한다. 본 애플리케이션은 공지문을 여러 카테고리로 자동 분류하여 사용자가 원하는 카테고리에 속한 공지문만을 볼 수 있도록 하며, 사용자가 선호할 만한 공지문을 추천하는 기능을 제공한다. 공지문 분류를 위해 다층 신경망 모델과 Naive Bayes 분류기를 사용하였으며, 공지문 추천을 위해 키워드 기반 자체 알고리즘을 사용하였다. 그 밖에 Word2Vec 을 활용한 검색어 추천 등 부가 기능을 제공하여 사용자가 쉽게 공지문을 찾을 수 있도록 하였다. 본 애플리케이션을 통해 사용자는 수많은 공지문 중 관심 있는 공지문만을 효율적으로 확인할 수 있다.
Journal of Korea Society of Industrial Information Systems
/
v.23
no.6
/
pp.9-19
/
2018
As the recent developments in the game industry and people's interest in game streaming become more popular, non-professional gamers are also interested in games and buying them. However, it is difficult to judge which game is the most enjoyable among the games released in dozens every day. Although the game sales platform is equipped with the game recommendation function, it is not accurate because it is used as a means of increasing their sales and recommending users with a focus on their discount products or new products. For this reason, in this paper, we propose a game recommendation system based on the users ratings, which raises the recommendation satisfaction level of users and appropriately reflect their experience. In the system, we implement the rate prediction function using collaborative filtering and the game recommendation function using Naive Bayesian classifier to provide users with quick and accurate recommendations. As the result, the rate prediction algorithm achieved a throughput of 2.4 seconds and an average of 72.1 percent accuracy. For the game recommendation algorithm, we obtained 75.187 percent accuracy and were able to provide users with fast and accurate recommendations.
최근 사람들의 삶의 질이 향상됨에 따라 기호품인 와인의 수요가 늘어나고 있다. 그러나 와인은 생산하는데 길게는 수십 년이 걸리는 고가의 제품이므로 소비자가 와인과 잘못 구매했을 때의 기회비용이 크다. 본 논문에서는 전문 와인 테이스터 들의 후기 빅 데이터를 활용하여 딥러닝 기반 추천시스템을 개발을 다룬다. 테이스터 들의 후기 빅 데이터에 대해 Apache Pig와 자연어 처리를 통한 전 처리 과정을 수행해 리뷰 별로 특징 벡터를 구성하고, 하이퍼 매개변수 최적화와 조기 종료 기법을 사용해 데이터에 대하여 최적의 딥러닝 분류기를 구성하였다. 마지막으로, 구성된 시스템의 신뢰도를 검증하기 위해서 딥러닝의 정확도와 오차율을 확인하였고 시스템이 추천한 와인을 시각화 이미지와 비교하여 성능을 검증하였다.
With the advance of information technologies and the spread of Internet use, the volume of usable information is increasing explosively. A content recommendation system provides the services of filtering out information that users do not want and recommending useful information. Existing recommendation systems analyze the records and patterns of Web connection and information demanded by users through data mining techniques and provide contents from the service provider's viewpoint. Because it is hard to express information on the users' side such as users' preference and lifestyle, only limited services can be provided. The semantic Web technology can define meaningful relations among data so that information can be collected, processed and applied according to purpose for all objects including images and documents. The present study proposes a content recommendation search system that can update and reflect personalized profiles dynamically in semantic Web environment. A personalized profile is composed of Collector that contains the characteristics of the profile, Aggregator that collects profile data from various collectors, and Resolver that interprets profile collectors specific to profile characteristic. The personalized module helps the content recommendation server make regular synchronization with the personalized profile. Choosing music as a recommended content, we conduct an experience on whether the personalized profile delivers the content to the content recommendation server according to a service scenario and the server provides a recommendation list reflecting the user's preference and lifestyle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.