• 제목/요약/키워드: 추진축계 진동

검색결과 58건 처리시간 0.02초

디젤기관 추진축계의 연성진동에 관한 연구 (제1보:연성이 고유진동수와 그의 모드에 미치는 영향) (Studies on Coupled Vibration of Diesel Engine Propulsion Shafting)

  • 김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.60-71
    • /
    • 2000
  • When the crankshaft of Diesel engine has more than 3 throws which are arranged in a different plane its vibration induces coupled motions especially the coupled torsional and axial vibration. Nowadays the torsional vibration which is influenced rather weak than axial one can be theoretically calculated fairly accurately but theoretical calculation results of the axial vibration which is influenced strongly from torsional vibration is not so good. To get accurate calculation results of axial vibration coupled axial-torsional vibration must be treated. in this investigation coupled effects of vibration of Diesel engine propulsion shafting are analyzed theoretically and some more simple calculation methods are also studied. On this first report effects of coupling on natural frequencies and their modes are mainly studied setting the each mass in 4 degrees of freedom. later this problem may be studied again by setting each mass as 6 degrees of freedom.

  • PDF

공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구 (A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;길병래;조권회;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.

공기부양선의 추진 및 부양축계 종진동 해석에 관한 연구 (A Study on the Analysis of Axial Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;길병래;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.768-776
    • /
    • 2007
  • In this study, axial vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including wood composite material of air propeller. aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis calculated the axial natural frequencies and mode shapes of the shafting system taking into account an equivalent mass-elastic model for shafting system as well as the three-dimensional models for propeller blade and fan impeller. Such a flexible shafting system has very intricate vibrating characteristics and especially, axial natural frequencies of flexible components such as propeller blade and impeller of lift fan can be lower to the extent that causes a resonance in the range of operating revolution. The results for axial vibration analysis are presented and compared with the results of axial vibration test for lift fan conducted during Sea Trial.

추진축계 횡진동 1차 기진력에 의한 여객.차도선의 선체 상부진동 (Passenger & Car Carrier's Superstructure Vibration induced by the 1st order Excitation of Whirling Vibration on the Propulsion Shafting System)

  • 이돈출;고재용;김정렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.301-306
    • /
    • 2000
  • Small passenger and car carrier ships are mainly used as a connection way between land and small islands. And these ships should be designed to enlarge the capacity of passenger and car loading within limited space and draft. So the resonances of various vibrations exist in normal operation range of engine and propulsion shafting. In this paper, hull's superstructure vibration which was especially induced by the 1st order excitation of whirling vibration on the 2-engines and 2-propulsion shafting systems is introduced. Also these are verified via the theoretical analysis using transfer matrix method and FEA software ANSYS and its vibration measurement.

  • PDF

선박 추진축계의 2절 비틀림진동에 기인한 주기관 X-모드 진동 현상의 연구 (A Study on Main Engine X-mode Vibration Phenomenon due to 2nd Node Torsional Vibration of the Marine Propulsion System)

  • 이돈출;김준성;김진희
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.806-813
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to 2nd node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the 2nd node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-flex82T 8 cylinder engine and 11S90ME-C 11 cylinder engine for a container ship was used as research model.

선박 추진축계의 2절 비틀림 진동에 기인한 주 기관 상부 구조 진동현상과 방진 대책 (Main Engine Upper Structural Vibration Phenomenon due to 2nd Node Torsional Vibration and Countermeasures on the Marine Propulsion System)

  • 이돈출;김준성;김진희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.549-554
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to $2^{nd}$ node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the $2^{nd}$ node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-82RT-flex 8 cylinder engine and 11S90S-ME 11 cylinder engine for a container ship was used as research model.

  • PDF

Supply Ship의 시운전중 상부구조물 과도진동 원인 분석 및 저감대책 (A Countermeasure for Excessive Vibration on Bridge Deck during a Sea-Trial of Supply Ship)

  • 손성완;김강부;강현승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1013-1017
    • /
    • 2003
  • 선박의 진동문제는 고출력 엔진의 채용과 고속화 및 전문화가 되면서 구조의 최적화에 따른 경향화 설계 및 각종 주요 기진원들이 다양화됨에 따라 새로운 진동문제가 많이 발생하게 되었으며 특히 최근 중소형 조선에서 건조중인 특수한 선박들의 경우 비교적 대용량의 출력을 가진 엔진과 긴 추진 축계 시스템 등으로 인하여 과도진동의 발생가능성이 커지고 있다 본 연구에서는 Supply Ship의 시운전 중에 발생한 상부구조물의 과도진동 현상의 원인을 분석하기 위해 다양한 운항 조건에서의 실선 진동 계측 및 분석을 수행하였으며 이를 바탕으로 효과적인 대책방안을 강구하기 위하여 구조의 진동특성 검토 및 진동해석을 수행하였다. 피리고 제시된 진동저감 대책이 적용된 후에 재 시운전시 진동 계측을 수행하여 대책 안의 유용성을 확인하였다.

  • PDF

튜닝댐퍼를 갖는 초대형 저속 2행정 디젤엔진의 비틀림진동 특성에 관한 연구 (A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Diesel Engines with Tuning Damper)

  • 이돈출;로날드디.바로
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.64-75
    • /
    • 2009
  • 최근 조선소에서 고출력 디젤엔진의 요구에 의해서 초대형 저속 2행정 디젤엔진이 개발되었으며, 연속최대출력이 $8{\sim}14$실린더를 갖는 10만 마력 이상의 엔진을 사용할 수 있게 되었다. 이러한 엔진들은 열효율, 운전에 대한 신뢰성, 강인성 및 기동성은 뛰어나지만 크랭크축을 포함한 추진축계에서 높은 비틀림진동을 유발한다. 따라서 이 연구에서는 엔진설계자의 입장에서 비틀림진동을 줄이기 위하여 튜닝 비틀림진동 댐퍼를 갖는 추진축계의 비틀림진동을 이론적으로 검토하였으며 실험모델인 12K98MC엔진과 12RT-flex엔진에서 튜닝댐퍼의 성능과 동적거동을 확인하고 있다.

디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석) (Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping))

  • 이돈출;김의간;전효중
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF