• 제목/요약/키워드: 추론 알고리즘

검색결과 692건 처리시간 0.029초

유전자 발현 데이터 기반 구강암에서의 세포 조성 차이 분석 (Distinct cell subtype composition using gene expression data in oral cancer)

  • 이제근
    • 한국융합학회논문지
    • /
    • 제10권8호
    • /
    • pp.59-65
    • /
    • 2019
  • 암 조직에는 다양한 형태의 세포가 존재하지만, 이들의 조성을 실험적으로 확인하기는 매우 어렵다. 본 연구에서는 유전자 발현 데이터에 통계적 기계학습 모델을 적용하여 각 샘플의 세포 조성을 추론하고, 이러한 세포 조성이 암조직과 정상 조직간에 차이가 있는지를 확인하였다. 두 가지 서로 다른 회귀 모델을 이용하여 세포 조성을 예측한 결과 CD8 T cell과 Neutrophil이 구강암 조직에서 정상 조직에 비해 증가함을 확인할 수 있었다. 또한 비지도학습 중 하나인 t-SNE를 적용하여, 유추된 세포 조성에 의해 정상 조직과 구강암 조직이 서로 군집을 이루고 있음을 확인하였고, 지도 학습 기반의 다양한 분류 알고리즘들을 이용하여 세포 조성 정보를 이용하여 구강암과 정상 조직을 예측하는 것이 가능함을 보였다. 이 연구는 구강암의 면역 세포 침투에 대한 이해도를 증진하는데에 도움을 줄 수 있을 것이다.

이미지 잡음에 강인한 CNN 기반 건물 인식 방법 (CNN-based Building Recognition Method Robust to Image Noises)

  • 이효찬;박인학;임태호;문대철
    • 한국정보통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.341-348
    • /
    • 2020
  • 인간의 눈과 같이 이미지에서 유용한 정보를 추출하는 기능은 인공지능 컴퓨터 구현에 필수적인 인터페이스 기술이다. 이미지에서 건물을 인식하여 추론하는 기술은 다양한 형태의 건물 외관, 계절에 따른 주변 잡음 이미지의 변화, 각도 및 거리에 따른 왜곡 등으로 다른 이미지 인식 기술 보다 인식률이 떨어진다. 지금까지 제시된 컴퓨터 비전(Computer Vision) 기반의 건물 인식 알고리즘들은 건물 특성을 수작업으로 정의하기 때문에 분별력과 확장성에 한계가 있다. 본 논문은 최근 이미지 인식에 유용한 딥러닝의 CNN(Convolutional Neural Network) 모델을 활용하는데 건물 외관에 나타나는 변화, 즉 계절, 조도, 각도 및 원근에 의해 떨어지는 인식률을 향상시키는 새로운 방법을 제안한다. 건물 전체 이미지와 함께 건물의 특징을 나타내는 부분 이미지들, 즉 창문이나 벽재 이미지의 데이터 세트를 함께 학습시키고 건물 인식에 활용함으로써 일반 CNN 모델 보다 건물 인식률을 약 14% 향상됨을 실험으로 증명하였다.

경량 깊이완성기술을 위한 효율적인 자기지도학습 기법 연구 (Efficient Self-supervised Learning Techniques for Lightweight Depth Completion)

  • 박재혁;민경욱;최정단
    • 한국ITS학회 논문지
    • /
    • 제20권6호
    • /
    • pp.313-330
    • /
    • 2021
  • 카메라와 라이다가 탑재된 자율주행 시스템에서 깊이완성기술을 통해 조밀한 깊이추정을 할 수 있다. 특히, 자기지도학습을 이용하면 깊이정답이 없는 주행데이터로도 깊이완성 네트워크의 학습이 가능하다. 실제 자율주행환경에서 이러한 깊이완성의 출력은 다른 알고리즘들의 입력으로 사용되므로 매우 빠른 지연속도를 요구한다. 그래서 본 논문에서는 종래의 연구들처럼 네트워크를 고도화하여 정확도를 높이기보단 추론속도를 극대화한 형태의 깊이완성 네트워크를 사용한다. GPU 연산에 최적화된 RegNet 인코더를 사용하고 네트워크의 병렬성을 고려한 U-Net 형태의 네트워크를 설계한다. 대신, 본 논문에서는 자기지도학습 과정에서 정확도를 높일 수 있는 몇 가지 기법들을 제시한다. 제시하는 기법들은 신뢰할 수 없는 라이다 입력에 대한 강인함을 높이고 사전에 추출한 시맨틱 정보를 바탕으로 에지와 하늘 영역에 대한 깊이 추정 품질을 향상시킨다. 실험을 통해 우리의 모델은 매우 경량임에도 (2.42ms at 1280x480) 노이즈에 강하며 최신 연구들과 대등한 정확도를 보임을 확인한다.

YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석 (Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images)

  • 김준석;홍일영
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.381-392
    • /
    • 2021
  • 본 연구에서는 UAV (Unmanned Aerial Vehicle)로 촬영한 이미지를 활용하여 수치지도 지형지물 표준 코드에서 정의하고 있는 건물 8종에 대하여 딥러닝 기반의 객체 탐지 분석을 수행하였다. UAV로 촬영한 이미지 509매에 대하여 이미지 라벨링을 하였고 YOLO (You Only Look Once) v5 모델을 적용하여 학습 및 추론을 진행하였다. 실험 및 분석은 오픈소스 기반의 분석 플랫폼과 알고리즘을 적용하여 데이터를 분석하였으며 분석결과 88%~98%의 예측 확률로 건물 객체를 탐지하였다. 또한 학습데이터의 구축 및 반복 학습의 과정에서 건물 객체 탐지의 높은 정확도를 위해 필요한 학습 방식 및 모델 구축방식을 분석하였고, 학습한 모델을 다른 영상자료에 적용하는 방안을 모색하였다. 본 연구를 통해 고효율 심층 신경망과 공간정보데이터가 융합하는 모델을 제안하며 공간정보데이터와 딥러닝 기술의 융합은 향후 공간정보데이터 구축의 효율성, 분석 및 예측의 정확도 향상에 많은 도움을 제공할 것이다.

WEB 기반 질병 예측 시스템 (Disease Prediction System based on WEB)

  • 홍유식;한영환;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.125-132
    • /
    • 2022
  • 코로나바이러스 감염은, 21세기, 아무리 현대 의학이 발전하였지만, 특별한 약이나 치료제가 없는 매우 난감한 상황이다. 그러므로, 세계 여러 나라에서, 코로나바이러스를 일차적으로 간단하게 파악하기 위해서, 유동 인구가 많이 이동하는 기차역, 버스터미널, 공항 터미널에는 발열 측정용 적외선 카메라가 설치하고, 이른 시간에 비접촉식 체온계를 사용해서, 37.5 도 이상의 고열로 분류되면, 코로나바이러스 감염 의심 환자로 1차 판단하고 있다. 그러나, 발열 측정 적외선 체온계는 체온측정 신뢰도가 75- 80% 정도이므로, 신뢰도를 높이는 방안을 간구해야만 된다는 지적이 많이 나오고 있다. 본 논문에서는, 이러한 문제점을 해결하기 위해서, 적외선 체온측정 신뢰도를 향상하게 시키기 위해서, 체온 조건, 기침 조건, 혈압 조건, 당뇨 조건, 산소포화도 조건, 맥진 조건, 설진 조건을 이용해서, 기계학습 기반 및 fuzzy 추론 기반, 코로나바이러스 감염조건 위험도를 예측하는 알고리즘을 제안하고 모의실험 하였다.

적대적 학습 개념을 도입한 경계 강화 SAR 수체탐지 딥러닝 모델 (Boundary-enhanced SAR Water Segmentation using Adversarial Learning of Deep Neural Networks)

  • 김휘송;김덕진;김준우;이승우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.2-2
    • /
    • 2023
  • 기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.

  • PDF

평가와 선택기법에 기반한 대표패턴 생성 알고리즘 (A Representative Pattern Generation Algorithm Based on Evaluation And Selection)

  • 이형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-147
    • /
    • 2009
  • 메모리 기반 추론 기법은 단순히 학습패턴이나 대표패턴의 형태로 메모리에 저장하며 테스트 패턴과의 거리 계산을 통하여 분류한다. 이 기법의 가장 큰 문제점은 학습 패턴 전체를 메모리에 저장하거나 학습 패턴들을 대표 패턴으로 대체하는 방법을 사용함으로 다른 기계학습 방법에 비하여 많은 메모리 공간을 필요로 하며, 저장되는 학습패턴이 증가할수록 분류에 필요한 시간도 많이 소요된다는 단점을 갖는다. 본 논문은 효율적인 메모리 사용과 분류 성능의 향상을 위한 EAS 기법을 제안하였다. 즉, 학습패턴에 대해 분할공간을 생성한 후 생성된 각 분할공간을 MDL기법과 PM기법으로 평가하였다. 그리고 평가 결과 가장 우수한 분할공간만을 취하여 대표패턴으로 삼고 나머지는 다시 분할하여 평가를 반복하는 기법이다. UCI Machine Learning Repository에서 벤치마크 데이터를 발췌한 실험 자료를 사용하여 제안한 기법의 성능과 메모리 사용량에 있어 우수함을 입증하였다.

딥러닝 기반 터널 영상유고감지 시스템 개발 연구 (Development of a deep-learning based tunnel incident detection system on CCTVs)

  • 신휴성;이규범;임민진;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.915-936
    • /
    • 2017
  • 본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.

분류와 원통에 의해 발생하는 쐐기소리의 특성 (Characteristics of Edgetones by Jet-Cylinder Interaction)

  • 한희갑;김승덕;안진우;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.235-239
    • /
    • 1996
  • 분류가 모서리에 충돌할 때 발생하는 순음성 소리인 쐐기소리(edgetone)는 공력음향의 대표적인 현상으로서 지금까지 수많은 연구가 있어 왔으며 그 대부분의 특성이 규명되었다고 할 수 있다. 쐐기소리의 발생기구인 되먹임(feedback) 이론을 처음으로 제안한 이는 Powell로서 그는 되먹임사이클의 위상조건에 의하여 주파수특성에 관한 모델을 제안하였으며, 최근 그 모델의 위상인자에 관하여 Kwon은 새로운 값을 제안한 바 있다. 그런데, 쐐기소리의 이론은 주로 분류가 쐐기나 벽에 충돌할 경우에 집중되어 왔으며 분류가 원통에 충돌하여 발생하는 경우에 관한 연구는 Krothapalli의 초음속분류에 관한 연구와 Mochizuki등의 아음속분류에서 원통지름의 영향에 관한 연구를 들 수 있을 뿐이다. Mochizuki등은 원통의 지름이 노즐의 높이보다 작은 경우에 쐐기 소리의 주파수가 원통의 와류이탈(vortex shedding) 주파수와 같은 것을 관찰하였다. 그러나 분류와 원통이 작용하여 발생하는 쐐기소리의 주파수 특성에 관한 이론적 해석을 시도한 연구는 없으며 또한 방사음장의 특성에 관하여도 Han과 Kwon에 의한 모델이 발표된 바 있으나 실험적으로 입증되지 못하였다. 따라서, 본 연구의 목적은 2 fig.1과 같이 2차원 분류가 원통에 충돌할 때 발생하는 쐐기소리의 주파수특성의 정량적인 모델을 세우고 방사음장의 지향특성의 이론 모델을 확립하는 것이다. 먼저 주파수특성을 실험하고 되먹임이론을 적용하여 분석하므로써 유효음원의 위치를 구하고 또한, 수직벽에 작용하여 발생하는 충돌음(impinging tone)의 경우를 실험하여 주파수특성을 비교 고찰하므로써 유효음원의 위치에 관한 이론을 입증한다. 아울러 원통과 평면벽의 각 경우에 방사음장의 지향특성을 측정하고 고찰한다.2,5,6]을 단계별로 고찰하여, 점점 까다로워져 가는 선박 진동규제[3,4]에 대처하고 승무원의 안락성에 대한 욕구, 구조물의 안전성, 장비의 성능보존이 만족되는 저진동 선박의 건조를 위해 향후 해결해야할 과제들을 도출하여 선박진동분야이 연구개발 방향을 제시하고자 한다. 하는 것은 진단의 정밀도에 문제가 있을 것으로 생각된다. 따라서 언어적진리치가 도입되어 [상당히 확실], [확실], [약간 확실] 등의 언어적인 표현을 이용하여 애매성을 표현하게 되었다. 본 논문에서는 간이진단 결과로부터 추출된 애매한 진단결과중에서 가장 가능성이 높은 이상원인을 복수로 선정하고, 여러 종류의 수치화할 수 없는 언어적(linguistic)인 정보ㄷㄹ을 if-then 형식의 퍼지추론으로 종합하는 회전기계의 이상진단을 위한 정밀진단 알고리즘을 제안하고 그 유용성을 검토한다. 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both

  • PDF

자발적 웃음과 인위적 웃음 간의 구분: 사람 대 컴퓨터 (Discrimination between spontaneous and posed smile: Humans versus computers)

  • 엄진섭;오형석;박미숙;손진훈
    • 감성과학
    • /
    • 제16권1호
    • /
    • pp.95-106
    • /
    • 2013
  • 본 연구에서는 자발적인 웃음과 인위적인 웃음을 변별하는 데 있어서 일반 사람들의 정확도와 컴퓨터를 이용한 분류 알고리즘의 정확도를 비교하였다. 실험참가자들은 단일 영상 판단 과제와 쌍비교 판단과제를 수행하였다. 단일 영상판단 과제는 웃음 영상을 한 장씩 제시하면서 이 영상의 웃음이 자발적인 것인지 인위적인 것인지를 판단하는 것이었으며, 쌍비교 판단과제는 동일한 사람에게서 얻은 두 종류의 웃음 영상을 동시에 제시하면서 자발적인 웃음 영상이 어떤 것인지 판단하는 것이었다. 분류 알고리즘의 정확도를 산출하기 위하여 웃음 영상 각각에서 8 종류의 얼굴 특성치들을 추출하였다. 약 50%의 영상을 사용하여 단계적 선형판별분석을 수행하였으며, 여기서 산출된 판별함수를 이용하여 나머지 영상을 분류하였다. 단일 영상에 대한 판단결과, 단계적 선형판별분석의 정확도가 사람들의 정확도보다 높았다. 쌍비교에 대한 판단결과도 단계적 선형판별분석의 정확도가 사람들의 정확도보다 높았다. 20명의 실험참가자 중 선형판별분석의 정확도를 넘어서는 사람은 없었다. 판별분석에 중요하게 사용된 얼굴 특성치는 눈머리의 각도로, 눈을 가늘게 뜬 정도를 나타낸다. Ekman의 FACS에 따르면, 이 특성치는 AU 6에 해당한다. 사람들의 정확도가 낮은 이유는 두 종류의 웃음을 구별할 때, 눈에 관한 정보를 충분히 사용하지 않았기 때문으로 추론되었다.

  • PDF