• Title/Summary/Keyword: 추력 축

Search Result 127, Processing Time 0.026 seconds

A Study on Command Generation Methods of Reaction Control System for Upper Stage Attitude Control of Launch Vehicles (발사체 상단 자세제어용 추력기시스템 명령생성방식 연구)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Choi, Kyung-Jun;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.44-54
    • /
    • 2014
  • This paper suggests two kinds of reaction control system command generation methods for upper stage attitude control of launch vehicles. The reaction control system is assumed to consist of two sets of three nozzles. One operation technology is based on mixed attitude error functions, and the other is based on command mixing functions. Both are compared via simulations. The simulation results show that the latter is comparatively preferable in terms of interference among control axes, independency of controller design and analysis among axes, and prediction of flight performance of each control axis.

Study on the Characteristics of Thrust and Torque for Partially Submerged Propeller (부분 침수 프로펠러의 bollard pull 추력 및 토오크 특성 연구)

  • Park, H.G.;Lee, T.G.;Paik, K.J.;Choi, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.264-272
    • /
    • 2011
  • Shipbuilders carry out the operation test to check the conditions of the main propulsion system and auxiliaries for moored vessel in the quoy before the sea trial. The estimation of the thrust and torque for the partially submerged propeller should be prepared to ensure the safety of mooring line and the ship. In this paper, the variations of the thrust and torque according to the shaft submergence and the propeller rotating speed in bollard pull condition are investigated with the model test and the numerical analysis. Based on these resaearch, the empirical formula representing the physical phenomena of the partially submerged propeller is derived and validated through comparison to measurement results of full-scale propellers under the quoy operation test.

Effect of Transient Condition on Propeller Shaft Movement during Starboard Turning under Ballast Draught Condition for the 50,000 DWT Oil Tanker (50,000 DWT 유조선의 밸러스트 흘수에서 우현 전타시 과도상태가 프로펠러축 거동에 미치는 영향 연구)

  • Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.412-418
    • /
    • 2020
  • Generally, the propeller shaft that constitutes the ship shaft system has different patterns of behavior due to the ef ects of engine power, propeller load and eccentric thrust, which increases the risk of bearing failure by causing local load variations. To prevent this, different studies of the propulsion shaft system have been conducted focused the relative inclination angle and oil film retention between the shaft and the support bearing, mainly with respect to the Rules for the Classification of Steel Ships. However, in order to secure the stability of the propulsion shaft via a more detailed evaluation, it is necessary to consider dynamic conditions, including the transient state due to sudden change in the stern wakefield. In this context, a 50,000 DWT vessel was analyzed using the strain gauge method, and the effects of propeller shaft movement were analyzed on the starboard rudder turn which is a typical transient state during normal continuous rate(NCR) operation in ballast draught condition. Analysis results confirm that the changed propeller eccentric thrust acts as a force that temporarily pushes down the shaft to increase the local load of the stern tube bearing and negatively affects the stability of the shaft system.

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.

Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II (한국형발사체 추력벡터제어 직구동 방식 전기기계식 구동장치시스템 개발)

  • Lee, Hee-Joong;Kang, E-Sok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.911-920
    • /
    • 2016
  • For the pitch and yaw axis attitude control of launch vehicle, thrust vector control which changes the direction of thrust during the engine combustion is commonly used. Hydraulic actuation system has been used generally as a drive system for the thrust vector control of launch vehicles with the advantage of power-to-weight ratio. Nowadays, due to the developments of highly efficient electric motor and motor control techniques, it has done a lot of research to adopt electro-mechanical actuator for thrust vector control of small-sized launch vehicles. This paper describes system design and test results of the prototype of direct drive electro-mechanical actuation system which is being developed for the thrust vector control of $3^{rd}$ stage engine of KSVL-II.

Propellant Consumption Estimation of Reaction Control System During Flight of KSLV-II (한국형발사체 추력기 자세제어시스템 비행 중 추진제 소모량 추정식)

  • Kang, Shin-jae;Oh, Sang-gwan;Yoon, Won-jae;Min, Byeong-joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.529-536
    • /
    • 2020
  • Reaction Control System of the third stage of the Korean Space Launch Vehicle II conducts roll control and 3 axis control throughout third stage engine start, satellite separation, and collision and contamination avoidance maneuver. Reaction control system consumes its propellant in each thruster operation. Hence, loading of proper amount of the propellant is important for mission success. It is needed to have a rough estimation method of propellant consumption during the flight. In this paper, we developed a energy equation using pressure and temperature data which are acquired in the on-board reaction control system. We constructed a test system which is similar with the on-board reaction control system to verify the energy equation. Test results using deionized water were compared with estimated propellant consumption. We also conducted an error analysis of the energy equation. We also presented the propellant consumption result of a system level operation test.

Flow Characteristics of Jet Vane Around Supersonic Flow Field (초음속 유동중의 제트베인 유동특성)

  • 박종호;신완순;신필권;박용철;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.34-34
    • /
    • 1998
  • 차세대 비행체가 갖추어야 할 요건으로 다양한 작동 범위에서 다목적으로 사용될 수 있어야 한다는 점이다. 비행체는 작전시 초음속으로 순항해야 하며, 폭탄으로 손상된 비행장에서도 이륙하여 작동할 수 있도록 짧은 이륙과 착륙 거리를 가져야 하기 때문에 현재 비행체보다 더 큰 받음각에서 작동하여 비행시 뛰어난 기동성을 가져야 한다. 제어력을 향상시키기 위해서 받음각과 동압에 의존하지 않고 큰 제어 모멘트를 제공하는 차세대 방법은 엔진의 배기가스를 원하는 비행 방향으로 제어하는 것으로 이러한 방법을 추력 편향 제어(Thrust Vector Control)라고 한다. 기존 공력에 의한 비행 자세제어 방법은 속도의 2승에 비례하는 제어력을 발생하지만, 실속을 피해야하기 때문에 공기력을 이용한 날개 및 비행체의 받음각에 한계가 있어 비행체의 선회능력을 제한하며 고공에서 저속비행 하는 경우에는 공기의 밀도가 낮고 동압이 작게 작용하여 선회능력은 낮아진다. 그러나, 추력 편향 장치는 공력을 이용하지 않고 추력을 이용하기 때문에 실속에 의한 제한이 없어 큰 받음각(70$^{\circ}$-90$^{\circ}$)으로 선회할 수 있어 월등한 기동성을 발휘할 수 있다. 이러한 추력 편향 장치 중 제트 베인형은 소형화가 가능하고, 하나의 노즐로 수직, 수형 및 횡 방향의 3축 제어를 할 수 있어 많이 사용되고 있다.

  • PDF

Dynamic response of linear actuator with the thrust force of transverse flux linear motor (횡자속 선형전동기의 추력특성에 따른 선형액추에이터의 동특성)

  • Woo, B.C.;Hong, D.K.;Kang, D.H.;Jang, J.H.;Kim, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1192-1194
    • /
    • 2005
  • 선형전동기는 일반적으로 회전형 전동기를 잘라 평면에 펼친 다음 회전형 전동기와 같이 구동할 경우 직선운동을 하는 전동기이다. 회전형 전동기에 비해서 효율특성을 다소 떨어지지만 직선운동을 위한 전동기가 필요할 경우에는 많이 사용하고 있는 실정이며 회전형의 경우 고정자와 회전자의 극간격을 유지하기 위해서 축을 중심으로 구동할 수 있게 제작하고 있는 실정이다. 그러나 선형전동기의 경우 정확한 극간경의 유지를 위해서 LM guide를 사용하는 것이 일반적이며 이로 인해서 고정자회 이동자 사이의 정확한 간격을 유지할 수 있게 된다. 또한 자속의 흐름과 이동자의 이동방향에 따라 일반적으로 선형전동기를 구분하는데 자속의 흐름으로 인해 만들어지는 평면과 이동자가 움직이는 방향이 같은 면 상에 있으면 종자속이라고 하고 횡방향으로 놓여질 경우 횡자속 선형전동기라고 부른다. 본 연구에서는 횡자속 선형전동기에서 발생되는 추력특성을 고려하여 선형액추에이터를 설계할 경우 발생되는 추력읜 불균일성에 대한 내용으로 전동기의 추력 특성 파형에 따른 성형 액추에이터의 동특성을 알아보았다. 특히 액추에이터에서 발생되는 공진특성을 기준으로 불때 같은 에너지로 약 2배의 동특성을 얻을 수 있었고 반력은 거의 같은 특성을 얻을 수 있었다.

  • PDF

Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV (우주발사체의 비행자세 3축 정밀제어를 위한 소형 액체로켓엔진의 펄스모드 응답특성)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo;Bae, Dae Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A liquid-monopropellant hydrazine thruster has several outstanding advantages such as relatively-simple structure, long/stable propellant storability, clean exhaust products, and so on. Therefore hydrazine thruster has such a wide application as orbit and attitude control system (ACS) for space vehicles. A hydrazine thruster with the medium-level thrust to be used in the ACS of space launch vehicles (SLV) has been developed, and its ground firing test result is presented in terms of thrust, impulse bit, temperature, and chamber pressure. It is verified through the performance test that the response and repeatability of thrust are very excellent, and the thrust efficiencies compared to its ideal requirement are larger than 93%.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(II) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (II))

  • Song, Bong-Ha;Ko, Hyun;Yoon, Woong-Sup;Lee, Sang-Kil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2001
  • The results of systematic numerical experiments of secondary gas injection thrust vector control are presented. The effects of secondary injection system such as injection location and nozzle divergent cone angle onto the overall performance parameters such as thrust ratio, specific impulse ratio and axial thrust augmentation, are investigated. Complex nozzle exhaust flows induced by the secondary jet penetration is numerically analyzed by solving unsteady three-dimensional Reynolds-averaged Navier-Stokes equations with Baldwin-Lomax turbulence model for closure. Numerical simulations compared with the experiments of secondary air injection into the rocket nozzle of $9.6^{\cire}$ divergent half angle showed good agreement. The results obtained in terms of overall performance parameters showed that locating the secondary injection orifice further downstream of primary nozzle ensures the prevention of occurrence of reflected shock wave, therefore is suitable for efficient and stable thrust vectoring over a wide range of use.

  • PDF