• Title/Summary/Keyword: 추력 분배

Search Result 10, Processing Time 0.019 seconds

Research for Thrust Distribution Method of DACS for Response to Pintle Actuating Failure (DACS 추진기관의 핀틀 구동장치 고장을 허용하는 추력 분배기법 연구)

  • Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.61-70
    • /
    • 2017
  • Robust thrust distribution method of solid DACS is researched. For the case of the system which has higher number of actuation nozzles than the degree of freedom of thrust to be controlled, the robust thrust allocation law which accommodate the abnormal operation is suggested. Assuming the situation that some nozzles are uncontrollable, the error between nozzle throat area command and response can be calculated. The error is used for realtime reshaping of weighting matrix. From the weighting effect, the nozzle which operated abnormally has low responsibility for the command then, the thrust error is reduced. The suggested algorithm is verified by the simulation of abnormal operation condition of DCS and ACS nozzle respectively.

Pressure Guidance and Thrust Allocation Law of Solid DACS (고체 추진 DACS의 압력 유도 및 추력 분배기법)

  • Park, Iksoo;Hong, Seokhyun;Ki, Taeseok;Park, Jungwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • The control law for simultaneous pressure and thrust control of solid DACS(Divert Attitude Control System) is suggested. To regulate the two variables effectively, the control structure of sequential loop closer is applied to the system considering the physical characteristics of each variable and the weighted pseudo-inverse method is suggested to allocate effective command for indeterminate system. Also, the pressure guidance law for safe and high acceleration is applied to the homing stage to verify the effectiveness of the command distribution.

Upper-Stage Launch Vehicle Servo Controller Design Considering Optimal Thruster Configuration (상단 발사체 추력기 최적 배치 연구)

  • Hwang,Tae-Won;Tak,Min-Je;Bang,Hyo-Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.55-63
    • /
    • 2003
  • An attitude control system using reaction thrusters for the upper stage of a launch vehicle is considered. The thruster configuration (position and direction) determines control system response, fuel consumption, effective torque and system fault tolerance. We propose a procedure for finding the optimal thruster configuration with desired control effectiveness over the range of selected torque commands. An optimization technique called Particle Swarm Optimization is used for the numerical experiments. The validity of the solution is checked through computer simulations.

Study on Coupling Drive Mechanism for Multi-Axis Pintle Thrusters (다축 핀틀 추력기에 적용을 위한 구동장치 연동 메커니즘 방안연구)

  • Lee, Jaecheong;Huh, Hwanil;Lee, Hosung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.722-730
    • /
    • 2015
  • Drive mechanism of multi-axis pintle thrusters for DCS(Divert Control System) was designed to meet the needs of minimizing the number of driving motors. In this study, preliminary model was designed in order to implement appropriate pressure control and thrust distribution. Based on the preliminary model study, the drive mechanism for DCS multi-axis pintle thrusters using piston was designed and evaluated by using AMESim software. Results show that three driving motors are enough to actuate four pintle thrusters.

브러시리스 직류모터 방식 EMDP의 구동을 위한 제어시스템 설계

  • Lee, Hee-Joong;Park, Moon-Su;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.162-170
    • /
    • 2005
  • In KSLV-I, actuation system for thrust vector control of kick motor was configured as electro-hydraulic servo actuation system and consisted of actuators, hydraulic power supply system, hydraulic power distribution system and control system. In case of hydraulic power supply system, we use EMDP(Electric Motor Driven Pump) to supply hydraulic power. Generally, we use brushed DC motor for EMDP but it is not easy to operate EMDP using brushed DC motor at a high altitude. Hence, we are developing EMDP using brushless DC motor to use at a high altitude. In this study, we will explain control system for BLDC motor to drive hydraulic pump.

  • PDF

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I))

  • 이호철;최용석;최재원;송택렬;송찬호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Conceptual Study and Design Ideas for SUAV Propulsion System (스마트무인기 신개념추진시스템 개념연구)

  • 전용민;정용운;양수석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2003
  • In this paper, the result of the conceptual study of a tipjet driven propulsion system is presented. The concept of a tipjet driven propulsion system is to employ tipjet as power source to drive a rotor Because the vehicle is supposed to takeoff and land vertically, a rotor system, which has tipjet nozzles, is adopted to fly like a helicopter. Exhaust gas, which is generated by an engine, Passes through an internal duct system and divided into four blade ducts. The design code is consists of two parts, engine model and internal duct model. Inside a rotating duct, compressible flow is affected by two additional force terms, centrifugal force and coriolis force and they govern the performance in rotary mode, The intention of this paper is to address the issues associated with sizing and optimizing configurations of a tipjet driven propulsion system especially in rotary wing mode.

Design of Control Mixer for 40% Scaled Smart UAV (스마트무인기 축소모형의 조종면 혼합기 설계)

  • Gang, Yeong-Sin;Park, Beom-Jin;Yu, Chang-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.240-247
    • /
    • 2006
  • Tilt rotor aircraft is a multi-configuration airplane which has three independent flight modes; helicopter, conversion, and aiplane. The control surface mixer resign is reqctired to generate and distribute efficient control forces and moments in each flight mode. In the conversion mode, the thrust vector is changed from helicopter mode to airplane, therefore the thrust vector makes undesired forces and moments which affect on pitch, roll and yaw dynamics. This paper describes the design results of control surface mixer design which minimize the undesired forces and moments due to nacelles tilting angle change for 4O% scaled model.

  • PDF

A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory (퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구)

  • Jeon, Ma-Ro;Kim, Hee-Su;Kim, Jae-Hak;Kim, Su-Jeong;Song, Soon-Seok;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.