• Title/Summary/Keyword: 추력 방향 조종

Search Result 15, Processing Time 0.022 seconds

조종장치 개발을 위한 지상 시험장치의 효과적인 연계방안

  • 김월동;박성준
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.4-4
    • /
    • 1997
  • 로켓 조종장치는 크게 추력방향 조종(TVC, Thrust Vector Control) 장치, 측면추력조종(Lateral Thrust Control) 장치 그리고 공기역학 조종면으로 분류할 수 있다. 조종장치의 공통된 특징은 모터가 작동하거나 유도탄이 비행할 때만 타의 효과가 발생한다는 점이다. 그러므로 조종장치를 개발하기 위해서는 이상류 초음속 유동이나 삼음속 이상의 자유유동(freestream)을 지상에서 효과적으로 모의할 수 있는 지상 시험장치가 필요하다. 이 시험장치에는 초음속 풍동과 유동 시험장치(cold-flow test stand), 그리고 6분력 트러스트 스텐드가 포함된다. 삼성항공은 우주용 추진기관의 성능을 지상에서 간단한 장치를 구현하여 시험할 수 있는 모의연소 시험장치, 노즐유동에 포함된 고체입자를 직접 수집할 수 있는 고체입자 포집장치 등 각종 시험장치를 제작하였다. 이를 바탕으로 차세대 전술유도탄의 핵심기술가운데 하나인 조종장치와 이를 효과적으로 개발하기 위한 지상 시험장치 확보에 착수하고 있다.

  • PDF

Characteristics of Side force using Jet Vanes in a Shroud (Shroud로 감싸있는 제트 베인의 측력 특성)

  • Sung, Hong-Gye;Hwang, Yong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.84-91
    • /
    • 2002
  • Thrust vector characteristics of jet vanes installed in a shroud are very unique and much more complicated than those of the jet vane acting without any shroud by the fact of additional physical phenomena. The fluid dynamic interferences induced by jet vanes and shroud as well as jet vane's aerodynamic performance are investigated to characterize thrust vector control by semi-empirical model, three dimensional numerical analysis including real complex geometry, and ground firing test of real motors.

An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control (추력방향조종용 제트베인의 3차원 온도분포 해석)

  • Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.283-291
    • /
    • 2011
  • A computational investigation has been carried out to study the heat transfer characteristics of jet vane assembly used for the thrust vector control(TVC) of a vertical launch motor. In this study, the coefficients of convective heat transfer on the jet vane are calculated using the solutions of thermal boundary-layer equation and several semi-empirical equations. The calculation of 3-dimensional temperature distribution for the jet vane assembly was performed using the softwares called PATRAN and ABAQUS. The accuracy of the present numerical method is verified by comparing with the measured and calculated temperatures within jet vane shaft. The temporal variation of jet vane temperatures for three deflection angles(0o, 12.5o, 25o) was discussed.

  • PDF

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-52
    • /
    • 2006
  • Techniques used for thrust vector control in rocket motors are mainly classified nozzles installed mechanical interference on the expansive region of nozzle(such as jet tabs and jet vanes) and movable nozzles(such as ball&socket and flexible seal). Using the numerical analysis and cold-flow test, this paper evaluates the performance of supersonic nozzle with asymmetric entrance shape when the test nozzle, especially ball&socket, is tilted. Numerical result shows that the effect of the asymmetric entrance shape on the flow field is suddenly diminished at the nozzle throat and downstream is mostly free from the effect of asymmetric entrance shape. Although the calculated thrust and lateral force are less than those of cold-flow test, two results show a fairly good agreement. But the cold-flow test results indicate the effective angles calculated from measured forces are not agreement with the geometric angles.

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.40-45
    • /
    • 2005
  • Techniques used for throcket motors are mainly classified as fixed nozzles with mechanical exhaust jet interferences on the expansion region (such as jet tabs and jet vanes) and movable nozzles(such as ball&socket md flexible seal). Using the numerical analysis and the cold-flow test, this paper evaluates the performance of supersonic nozzle for asymmetric entrance shape at tilted position of ball&socket nozzle. Numerical results show that the asymmetric effects in the flow fields are gradually diminished up to the nozzle throat and are not noticeable downstream of the nozzle throat. Although the calculated thrust and the lateral force are less than those of cold-flow test, two results show a flirty good agreement.

  • PDF

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

The Study of Aerodynamic Characteristics of Jet-Vane Affected by the Shroud (Shroud의 영향에 따른 제트 베인의 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • Thrust vector control system is a control device which is mounted on the exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. Thermal and aerodynamic loads are acting on the surface of jet vane when it is exposed to the jet flow. Axial thrust loss and side thrust loss are affected by shock patterns and interactions between jet-vanes which varies with jet-vane geometry and turning angle. In this research, the performance estimation using the numerical simulation analysis of the nozzle is given and the investigation of the flow visualization and aerodynamic performance with the enforced power to the vane is taken.

Design and Test of Lateral/Directional Control Law of a Tailless UAV Using Spoilers (스포일러를 이용한 무미익 항공기의 횡방향축 제어기설계 및 시험)

  • Hong, Jin-sung;Hwang, Sun-yu;Lee, Kwang-hyun;Hur, Gi-bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.422-428
    • /
    • 2019
  • A tailless or Blended-Wing-Body(BWB) shaped configuration is highlighted for UCAV with low RCS characteristics. The BWB configuration is characterized by its directional static instability and low controllability. To control the directional movement of the BWB configured vehicle, directional thrust vectoring equipment or drag rudder typed control surfaces which utilize the drag differences of the wing can be considered. This paper deals with a BWB shaped configuration using a spoiler and describes the lateral-directional aerodynamic characteristics of the vehicle. In addition, it is shwon that the lateral-directional motion can be controlled effectively by using the classical PI control structure. This control law is verified by flight test and showed adequate for the tailless BWB shaped UAV.

Design of Electromechanical Actuator Capable of Simultaneous Control of Aerodynamic and Thrust Vector (공력과 추력방향 동시 제어가 가능한 전기식 구동장치 설계)

  • Lee, Ha Jun;Yoon, Kiwon;Song, In Seong;Park, Chang Kyoo;Lee, Young Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Electromechanical Actuator(EMA) for flight vehicles generally serves to control the fin deflection angle or the thrust vector angle. This paper deals with design and development of EMA for both aerodynamic control and thrust vector control. In this paper, a novel compact EMA is proposed that can simultaneously control both the tail fin and the jet vane with one actuator and detach the jet vane after vertical launch and rapid turn of the flight vehicle so as to increase efficiency during flying to target. To do this, we designed the EMA using a push-push link mechanism and derived a mathematical model. The mathematical model is validated by comparing simulation result and experimental data. The performance and reliability of the proposed EMA have been verified through performance test, environmental test and ground test. The proposed EMA is expected to be useful as an EMA for flight vehicles because of its simple and compact structure, as well as its performance and reliability.