• Title/Summary/Keyword: 추력벡터 제어

Search Result 64, Processing Time 0.022 seconds

Study of the Thrust Vector Control Using a Secondary Flow Injection (2차 유동의 분사에 의한 제트 유동의 추력제어에 관한 연구)

  • 정성재;김희동;안재문;정동호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.14-15
    • /
    • 2002
  • 기체역학 이론에 의하면, 노즐의 공급압력과 노즐의 상세형상이 주어지는 경우에 추진 노즐로부터 방출되는 제트유동의 추력을 예측할 수 있으며, 최대추력은 노즐 출구에서 유동이 적정팽창 상태로 될 때 얻어진다. 실제의 추진 로켓에서나 다른 비상체에서는 추력의 예측뿐만 아니라, 얻어지는 추력의 방향을 적절하게 조절하여 제어하는 것이 요구된다. 종래 추력벡터 제어를 위해서 많은 연구들이 수행되었다. 일례로 추진노즐 내부에 베인(vane) 등을 삽입하여, 추력벡터를 조절하거나, 추진 노즐을 가변(movable nozzle)으로 하는 방법, 그리고 노즐내부에 2차 유동을 분사(secondary flow injection)하여 평균 추력벡터를 제어하는 방법 등이 제안되어 응용되어 왔다.

  • PDF

Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept (이중목 노즐 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.24-32
    • /
    • 2019
  • Numerical simulations were carried out in a supersonic nozzle to investigate the possibility of using dual-throat nozzle concept in fluidic thrust vector control. Validation of the methodology showed an excellent agreement between the computational fluid dynamics results and the experimental data available, which were based on the well-assessed SST $k-{\omega}$ turbulence mode. The deflection angle, system resultant thrust ratio, and thrust efficiency were investigated in a wide range of nozzle pressure ratios and injection pressure ratios. The performance variations of the dual-throat nozzle thrust vector control system were clearly illustrated with this two-dimensional computational domain. Some constructive conclusions were obtained that may be used as a reference for further studies in the fluidic thrust vector control field.

A Study of the Thrust Vectoring Control Using Secondary Co- and Counter-Streams (2차 순유동과 역유동을 이용한 추력벡터 제어법에 관한 연구)

  • Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.109-112
    • /
    • 2004
  • Of late, the thrust vectoring control, using fluidic co-flow and counter-flow concepts, has been received much attention since it not only improves the maneuverability of propulsive engine but also reduces an additional material load due to the trailing control wings, which in turn reduce the aerodynamic drag. However, the control effects are not understood well since the flow field involves very complicated non: physics such as shock wave/boundary layer interaction, separation and significant unsteadiness. Existing data are not enough to achieve the effectiveness and usefulness of the thrust vectoring control, and systematic work is required for the purpose of practical applications In the present study, computational study has been performed to investigate the effects of the thrust vector control using the fluidic co-and counter-flow concepts. The results obtained show that, for a given pressure ratio, the thrust deflection angle has a maximum value at a certain suction flow rate, which is at less than $5\%$ of the mass flow rate of the primary jet. With a longer collar, the same vector angle is achievable with smaller mass flow rate.

  • PDF

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II (한국형발사체 추력벡터제어 직구동 방식 전기기계식 구동장치시스템 개발)

  • Lee, Hee-Joong;Kang, E-Sok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.911-920
    • /
    • 2016
  • For the pitch and yaw axis attitude control of launch vehicle, thrust vector control which changes the direction of thrust during the engine combustion is commonly used. Hydraulic actuation system has been used generally as a drive system for the thrust vector control of launch vehicles with the advantage of power-to-weight ratio. Nowadays, due to the developments of highly efficient electric motor and motor control techniques, it has done a lot of research to adopt electro-mechanical actuator for thrust vector control of small-sized launch vehicles. This paper describes system design and test results of the prototype of direct drive electro-mechanical actuation system which is being developed for the thrust vector control of $3^{rd}$ stage engine of KSVL-II.

A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle (이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.25-30
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze the performance of a dual throat nozzle(DTN) at various mass flow rate of secondary flow and nozzle pressure ratios(NPR). Two-dimensional, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. The present computational results were validated with some experimental data available. Based upon the present results, The control effectiveness of thrust-vector is discussed in terms of the thrust coefficient and the discharge coefficient.

A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle (이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.339-342
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique of propulsion jet. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze the performance of a dual throat nozzle(DTN) at various mass flow rate of secondary flow. Two-dimensional, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. The present computational results were validated with some experimental data available. Based upon the present results, Thrust-vector control using a DTN is discussed in terms of the thrust coefficient and the coefficient of discharge.

  • PDF

Fluidic Thrust Vector Control Using Shock Wave Concept (충격파 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.10-20
    • /
    • 2019
  • Recently, fluidic thrust vector control has become a core technique to control multifarious air vehicles, such as supersonic aircraft and modern rockets. Fluidic thrust vector control using the shock vector concept has many advantages for achieving great vectoring performance, such as fast vectoring response, simple structure, and low weight. In this paper, computational fluid dynamics methods are used to study a three-dimensional rectangular supersonic nozzle with a slot injector. To evaluate the reliability and stability of computational methodology, the numerical results were validated with experimental data. The pressure distributions along the upper and lower nozzle walls in the symmetry plane showed an excellent match with the test results. Several numerical simulations were performed based on the shear stress transport(SST) $k-{\omega}$ turbulence model. The effect of the momentum flux ratio was investigated thoroughly, and the performance variations have been clearly illustrated.

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.