• Title/Summary/Keyword: 최적 호흡 주기

Search Result 8, Processing Time 0.023 seconds

The Optimal respiration training based work-related stress relief system (최적 호흡 훈련기반 업무 스트레스 완화 시스템)

  • Lee, Yangwoo;Whang, MinCheol
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • The purpose of the study is to develop self-management system that people can enhance physical and psychological health through repeating by themselves to relieve work-related stress. The regular respiration can help homeostasis of heart to maintain. Also the effect can be stabilized from irregular heart rhythm by work-related stress. People have optimal respiration cycle to stabilize heart rhythm and repeat training using their RSP(respiration) time including expiration and inhalation. This system is not only offering optimal respiration training service but also finding optimal respiration cycle. The adults who have stress from work participated in verification experiment. This study expects to help those people who are workers related to call center jobs in emotional labor can relieve their stress. It can also help to enhance their own health and increase their work efficiency.

Statistical Study on Respiratory Signal Analysis according to Patient Position and Device in Radiation Therapy (방사선치료 시 자세와 device에 따른 호흡신호의 분석)

  • Seo, Jeong-Min;Park, Myung-Hwan;Shim, Jae-Koo;Kim, Chan-Hyeong;Park, Cheol-Soo;Kim, Kyung-Keun;Cho, Jae-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.179-187
    • /
    • 2011
  • This study statistically analyzed the difference of the stability of maintaining a respiratory period shown according to position and use of a device to search the tendency and usefulness of a device. The supine position showed better maintaining respiratory cycles than the prone position. The 85% of subjects who showed bad maintenance pattern of a respiratory cycle were significantly different pattern with using belly board. It could be said that there was a significant correlation between the maintenance of a respiratory cycle and relative index of respirational stability(p=0.044, kappa=0.607). The movement due to respiration was one of important considerations in the radiation therapy on chest, abdomen, and even pelvis. This study could contribute to the high quality radiation therapy by statistic analysis of respiratory signals and its application.

Statistical Study on Respiratory Stability Through RPM Signal Analysis according to Patient Position Under Radiation Therapy and Device (방사선 치료 환자의 자세 및 Device에 따른 RPM 신호 분석을 통한 호흡 안정성의 통계적 고찰)

  • Park, Myung-Hwan;Seo, Jeong-Min;Choi, Byeong-Gi;Shin, Eun-Hyeok;Song, Gi-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Purpose: This study statistically analyzed the difference of the stability of maintaining a respiratory period shown according to position and use of a device to search the tendency and usefulness of a device. Materials and Methods: The study obtained respiratory signals which maintained a respiratory period for 20 minutes each supine and prone position for 11 subjects. The study obtained respiratory signals in a state of using a belly board for 7 patients in a bad condition of a respiratory period in a prone position to analyze a change in respiration and the stability before and after the use of a device. Results: The supine part showed 54.5%, better than the prone part of 36.4% in a case that the stability for maintaining a respiratory period was in a good condition as a fixed respiratory period was well maintained according to the position. 6 patients (85%) showed a maintenance pattern of a respiratory period significantly different before the use and 4 patients showed a significantly good change in the stability for maintaining a respiratory period as a result that belly boards were used for 7 patients that the maintenance of a respiratory period was not in a good condition on a prone position. Conclusion: It seemed that this study could contribute to the maintenance of respiratory period and of respiratory stability as the optimal position for maintenance of respiration and the use of a device such as a belly board were decided through statistic analysis of respiratory signals and its application even if patient position and use of device were decided by the beam arrangement a treatment part of a patient, location of a target, and an expected plan.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Consideration of the Accuracy by Variation of Respiration in Real-time Position Management Respiratory Gating System (호흡동조 방사선치료에 사용되고 있는 RPM (Real-time Position Management) Respiratory Gating System의 호흡변화에 따른 정확성에 대한 고찰)

  • Na, Jun Young;Kang, Tae Young;Baek, Geum Mun;Kwon, Gyeong Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Purpose: Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Materials and Methods: Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30~70% gating) in Asan Medical Center. Results: It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. Conclusion: The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy.

  • PDF

Utility Estimation of the Manufactured Stereotactic Body Radiotherapy Immobilization (자체 제작한 정위적체부방사선치료(Stereotactic Body Radiotherapy) 고정용구의 유용성 평가)

  • Lee, Dong-Hoon;Ahn, Jong-Ho;Seo, Jeong-Min;Shin, Eun-Hyeok;Choi, Byeong-Gi;Song, Gi-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Purpose: Immobilizations used in order to maintain the reproducibility of a patient set-up and the stable posture for a long period are important more than anything else for the accurate treatment when the stereotactic body radiotherapy is underway. So the purpose of this study is to adapt the optimum immobilizations for the stereotactic body radiotherapy by comparing two commercial immobilizations with the self-manufactured immobilizations. Materials and Methods: Five people were selected for the experiment and three different immobilizations (A: Wing-board, B: BodyFix system, C: Arm up holder with vac-lock) were used to each target. After deciding on the target's most stable respiratory cycles, the targets were asked to wear a goggle monitor and maintain their respiration regularly for thirty minutes to obtain the respiratory signals. To analyze the respiratory signal, the standard deviation and the variation value of the peak value and the valley value of the respiratory signal were separated by time zone with the self-developed program at the hospital and each tie-downs were compared for the estimation by calculating a comparative index using the above. Results: The stability of each immobilizations were measured in consideration of deviation changes studied in each respiratory time lapse. Comparative indexes of each immobilizations of each experimenter are shown to be A: 11.20, B: 4.87, C: 1.63 / A: 3.94, B: 0.67, C: 0.13 / A: 2.41, B: 0.29, C: 0.04 / A: 0.16, B: 0.19, C: 0.007 / A: 35.70, B: 2.37, C: 1.86. And when all five experimenters wore the immobilizations C, the test proved the most stable value while four people wearing A and one man wearing D expressed relatively the most unstable respiratory outcomes. Conclusion: The self-developed immobilizations, so called the arm up holder vac-lock for the stereotactic body radiotherapy is expected to improve the effect of the treatment by decreasing the intra-fraction organ motions because it keeps the respiration more stable than other two immobilizations. Particularly in case of the stereotactic body therapy which requires the maintenance of set-up state for a long time, the self-developed immobilizations is thought to more useful for stereotactic body radiotherapy rather than the rest two immobilizations with instable respiratory cycle as time passes.

  • PDF

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.