• Title/Summary/Keyword: 최적 용량

Search Result 893, Processing Time 0.03 seconds

Factors Influencing Pain Medication Preference for Breakthrough Cancer Patients and Their Application to Treatments: Survey on Physicians (돌발성 암성 통증 약물 선택 요인과 사용 경험: 의사 대상 설문조사)

  • Shin, Jinyoung;Shim, Jae Yong;Seo, Min Seok;Kim, Do Yeun;Lee, Juneyoung;Hwang, In Gyu;Baek, Sun Kyung;Choi, Youn Seon
    • Journal of Hospice and Palliative Care
    • /
    • v.21 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • Purpose: The purpose of this study was to assess the factors influencing the rescue medication decisions for breakthrough cancer patients and evaluate treatments using the factors. Methods: Based on the results of an online survey conducted by the Korean Society of Hospice and Palliative Care from September 2014 through December 2014, we assessed the level of agreement on nine factors influencing rescue medication preference. The same factors were used to evaluate oral transmucosal fentanyl lozenge, oral oxycodone and intravenous morphine. Results: Agreed by 77 physicians, a rapid onset of action was the most important factor for their decision of rescue medication. Other important factors were easy administration, strong efficacy, predictable efficacy and less adverse effects. Participants agreed that intravenous morphine produced a rapid onset of action and strong and predictable efficacy and cited difficulty of administration and adverse effects as negative factors. Oral oxycodone was desirable in terms of easy administration and less adverse effects. However, its onset of action was slower than intravenous morphine. While many agreed to easy administration of oral transmucosal fentanyl lozenge, the level of agreement was low for strength and predictability of its efficacy, long-term durability and sleep improvement. Conclusion: Rapid onset of action is one of the important factors that influence physicians' selection of rescue medication. Physicians' assessment of rescue medication differed by medication.

Microbial Risk Assessment of High Risk Vibrio Foodborne Illness Through Raw Oyster Consumption (생굴 섭취로 인한 고병원성 Vibrio균 식중독 위해평가)

  • Ha, Jimyeong;Lee, Jeeyeon;Oh, Hyemin;Shin, Il-Shik;Kim, Young-Mog;Park, Kwon-Sam;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • This study investigated the probability of foodborne illness caused by raw oyster consumption contaminated with high risk Vibrio species such as V. vulnificus and V. cholerae. Eighty-eight raw oyster samples were collected from the south coast, west coast and Seoul areas, and examined for the prevalence of high risk Vibrio species. The growth patterns of V. vulnificus and V. cholerae in raw oysters were evaluated, and consumption frequency and amounts for raw oyster were investigated from a Korean National Health and Nutrition Examination Survey. With the collected data, a risk assessment simulation was conducted to estimate the probability of foodborne illness caused by intake of raw oysters, using @RISK. Of 88 raw oysters, there were no V. vulnificus- or V. cholerae-positive samples. Thus, initial contamination levels of Vibrio species in raw oysters were estimated by the statistical methods developed by Vose and Sanaa, and the estimated value for the both Vibrio spp. was -3.6 Log CFU/g. In raw oyster, cell counts of V. vulnificus and V. cholerae remained unchanged. The incidence of raw oyster consumers was 0.35%, and the appropriate probabilistic distribution for the consumption amounts was the exponential distribution. A risk assessment simulation model was developed with the collected data, and the probability of the foodborne illness caused by the consumption of raw oyster was 9.08×10-15 for V. vulnificus and 8.16×10-13 for V. cholerae. Consumption frequency was the first factor, influencing the probability of foodborne illness.

Characteristics of Electrode Potential and AC Impendance of Perchlorate Ion-Selective Electrodes Based on Quaternary Phosphonium Salts in PVC Membranes (제4급 인산염을 이용한 과염소산 이온선택성 PVC막 전극의 전극전위와 AC 임피던스 특성)

  • 안형환
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.230-239
    • /
    • 1999
  • Perchlorate ion-selective electrodes in PVC membranes that respond linearly to concentration 106 M were developed by incorporating the quaternary phosphonium salts as a canier. The effects of the chemical structure, the contents of canier, the kind of plasticizer and the membrane thickness on electrode characteristics such as the electrode slope, the linear respone range and the detection limit were studied. With this results, the detectable pH range, selectivity coefficients and AC impedance characteristics were compared and investigated. The perchlorate ion substituents of the quaternary phosphonium salts like tetraoctylphosphonium perchlorate (TOPP) , tetraphenylphosphonium perchlorate(TPPP), and tetrabutylphosphonium perchlorate(TBPP) as a canier were used. The electrode characteristics were better in the ascending order of TBPP < TPPP < TOPP, with the increase of carbon chain length of the alkyl group. Dioctylsebacate(OOS) was best as a plasticizer, the canier contents were better with 11.76 wt% and the optimum membrane thickness was 0.19 mm. Under the above condition, the electrode slope was 56.58 mV/$^P{ClO}_4$,the linear response range was $10^{-1}$\times$10^{-6}$ M, the detection limit was 9.66 x $10^{-7}$ M. The performance of electrode was better than Orion electrode. The electrode potential was stable within the pH range from 3 to 11. The order of the selectivity coefficients for the perchlorate ion was sol < F < Br < 1. With the result of impedance spectrum, it was found that the equivalent circuit for the electrode could be expressed by a series combination of solution resistance, parallel circuit consisting of the double layer capacitance and bulk resistance and Warburg impedance. And solution resistance was almost not appeared and Warburg impedance was highly appeared by diffusion. Then Warburg coefficient was 1.32$\times$$10^74 $\Omega$ $\cdot$ ${cm}^2/s^{1/2}$.

  • PDF

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

A Study on the Establishment of Optimal Transportation Networks in Busan New Port (부산항 신항 최적의 교통망 수립에 관한 연구)

  • Park, Ho-Kyo;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • The development project of Busan New Port aims to be Logistics Hub Port but there are too many things to deal with ; enlargement of harbour, interport competition, modernization of harbour loading equipment and so on. At present, 23 berths of North and South container quay are in operation and 22 berths will be constructed on west and south-side by 2020. Namely, Busan New Port will operate 45 berths in 2020. When it comes to port distripark, a large-scale of Port distripark project is underway, such as Ung-Dong district 1,2 phase, West container 1,2phase, North distripark and so on. This study is to deduce traffic system problem of Busan New Port which is caused by the development project through predicting traffic need considering the development project. According to study, there are three main problems of traffic system : 1. traffic congestion caused on main crossroad, connecting second harbour back road. 2. It has been predicted that South-North road and traffic capacity of New Port road would lack compared to traffic volume-to-be-increased. Moreover, the detour volume of traffic is caused because New Port's 1st avenue and route 2 were not connected directly. Thus, this study suggests three kinds of improvement plan for smoother traffic flow. 1st. Operate roundabout on major intersection, for example, second harbour back road, west container wharf's subway corridors(South to North), and permit only right turn on sub-intersection. 2nd. Extend New Port road(North container's port road) by utilizing side walk and median. 3rd. Install exit ramp which utilizes Route 2 connecting New Port's 1st avenue and local road 1042. The method we used to analyze the effect of improvement is Vissim of Mircro Simulation Package.

A Study on Heavy Metal Contents in Processed Foods and Their Safety Evaluations (가공식품 중 중금속 함량 및 안전성 평가)

  • Lee, Hyo-Jung;Shim, Jee-Youn;Oh, Hyun-Suk;Jang, Mi-Ran;Lee, Yoon-Ae;Lee, Ryun-Kyung;Kim, Min-A;Lee, Sang-Min;Cho, Tae-Yong;Kang, Ho-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This research was carried out as a survey on the contents of lead, cadmium, and arsenic in processed foods (milk, vegetable oil, and margarine) in Korea. The limits of quantification (LOQs) were Pb 0.3 ${\mu}g/kg$, Cd 0.15 ${\mu}g/kg$, and As 0.45 ${\mu}g/kg$ for milk and Pb 0.61 ${\mu}g/kg$, Cd 0.31 ${\mu}g/kg$, and As 0.91 ${\mu}g/kg$ for vegetable oil and margarine. The recoveries were 92.6-98.0% for Pb, 91.2-98.9% for Cd, and 97.9-104.7% for As. The average levels of Pb were 2.395 ${\mu}g/kg$ for milk, and 7.656 ${\mu}g/kg$ for vegetable oil. The average levels of Cd were 0.483 ${\mu}g/kg$ for milk, and 0.380 ${\mu}g/kg$ for vegetable oil, and levels of As were 0.781 ${\mu}g/kg$ for milk, and 1.241 ${\mu}g/kg$ for vegetable oil. The results of this study showed that Pb, Cd, and As contents in the whole samples were less than the maximum residual levels in the processed foods that were specified by the Codex standard.

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

Application Effects of Biochar Derived from Pruned Stems of Pear Tree on Growth of Crops and Soil Physico-chemical Properties (배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Park, Jung-Soo;Shim, Jae-Man;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • This study was conducted to develop the manufacturing method of biochar using pruned stems of pear tree and its application effect on the crop growth and soil physico-chemical properties. In this study, biochar derived from pruned stems of pear tree at heating temperature of $300^{\circ}C$, $500^{\circ}C$ and $700^{\circ}C$ in heating times of 2, 3 and 4 hours, were tested in the changes of their chemical properties during biochar processing. The pH, Exch. K, Exch. Mg and cation exchange capacity (CEC) increased as the pyrolysis temperature increased during the production of biochar, and the change of these properties rapidly occurred at $500^{\circ}C$. However, as the pyrolysis temperature increased, ash content increased and total carbon (T-C), yield decreased. And the change of the properties in response to the heating time was not shown. It was thought that it would be desirable to set the production conditions of biochar at $500^{\circ}C$ for 2 hours in consideration of the change of chemical properties and the ash content and yield. And also, were conducted the experiments to establish manufacturing method of farm-made biochar using drum biochar manufacturing machine and investigate the application effects of biochar on the cultivation of chinese cabbage and tomato. Application of biochar derived from pruned stems of pear tree could enhance pH, organic matter (OM), total carbon (T-C) of soil. On the other hand, soil electrical conductivity (EC), NO3-N were lowered compared to the control which has no application. The bulk density, porosity and aggregate formation of soil were improved by biochar application. The fresh matter yields of chinese cabbage and tomato were significantly increased in proportion to the application rate of biochar. This study demonstrated the effect of the biochar derived from agricultural byproduct to be as a low cost potential soil ameliorant by physico-chemical properties in eco-friendly greenhouse cultivation.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.