• Title/Summary/Keyword: 최적화 설계

Search Result 5,702, Processing Time 0.034 seconds

Flow Analysis in Road Gutter Storage Using Fluent Model (Fluent 모형을 이용한 도로 측구 저류조에서의 흐름 분석)

  • Kim, Jung Soo;Lee, Min Sung;Han, Chyung Such;Yoo, In Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.234-234
    • /
    • 2022
  • 도로에서의 우수를 원활하게 처리하기 위해서 빗물받이 및 연결관 등의 노면 배수시설이 설치되고 있으며, 노면 배수는 측구부를 통해 흘러 빗물받이 유입부로 차집되고 연결관을 통해 하수관거로 배수된다. 그러나 최근 국내 기상패턴의 변화로 국지성 집중호우와 같이 시간당 강우량 증가로 도로부와 저지대에서 배수시설의 배수불량에 따른 도심지 내수침수 피해가 발생하고 있다. 이에 정부에서는 다양한 우수관거 개선사업, 빗물펌프장, 지하저류조와 같은 방재시설을 설치하고 있으나 우수유출저감시설은 대규모 예산이 소요되고 실제 침수지역에 피해 저감효과에 대한 효용성 문제에 대한 제기뿐만 아니라 과밀화된 도심지에서는 지하공간 활용에 한계가 있는 실정이므로 도심지의 다양한 공간을 활용한 도시 배수 및 저류시설에 대한 연구가 필요하다. 따라서 본 연구에서는 유휴 공간인 도로 측구부 공간을 활용하여 도로 노면수를 저류 및 지체할 수 있는 노면수 측구 저류시설의 개념을 제시하고 측구저류조의 활용성을 판단하기 위하여 빗물받이 유입구, 빗물받이, 측구 저류조 및 빗물받이와 측구저류조 연결부에서의 노면수 유입, 유출 및 저류 등의 다양한 흐름 변화를 확인하기 위하여 Fluent 모형의 적용성을 분석하였다. 수치모의 전체 형상은 50x50cm 크기의 빗물받이를 기준으로 양쪽에 2m 길이의 측구 저류조를 원형관으로 연결하여 1/5 축소모형으로 구성하고 격자는 빗물받이 유입부, 빗물받이 및 측구 저류조 내부의 복잡한 3차원 흐름을 모의하기 위해 사면체와 육면체로 조밀하게 생성하였다. 다상유동해석을 위해 VOF(Volume of Fluid)방법을 적용하였고, 수치해석 방법으로는 비정상류, 난류 모형으로는 SST k-ω모형을 적용하였다. 수치모의 조건으로는 설계빈도별(5~30년) 우수유출량을 산정하여 유입 유량별 기존 빗물받이 유입부에서의 유입흐름, 빗물받이 내부에서의 와 발생흐름, 측구 저류조 및 연결관에서의 흐름을 구현하여 분석하였다. 수치모의 결과 빗물받이 유입부에서 연결관을 통한 측구 저류조로 유입되는 유입흐름과 빗물받이 하단부의 배수관을 통해 유출되는 흐름을 정상적으로 구현하였으며, 빗물받이 유입부 및 측구 저류조 연결관에서의 유속변화도 확인할 수 있었다. 또한 빗물받이와 측구 저류조에서 다양한 흐름을 구현하기 위한 Flunet 모형의 적용성을 검토하였으며, 향후 수리실험을 통하여 실제 흐름과의 매개변수 최적화 및 다양한 도로 조건의 변화를 고려한 수치모의 분석을 통하여 지속적인 모형의 검증이 가능할 것으로 판단된다.

  • PDF

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS) (시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.37-48
    • /
    • 2024
  • Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.

AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation (큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현)

  • Dong-Young Kim;Gi-Seong Hwang
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2024
  • In recent trends, there has been an increase in 'Qshing' attacks, a hybrid form of phishing that exploits fake QR (Quick Response) codes impersonating government agencies to steal personal and financial information. Particularly, this attack method is characterized by its stealthiness, as victims can be redirected to phishing pages or led to download malicious software simply by scanning a QR code, making it difficult for them to realize they have been targeted. In this paper, we have developed a classification technique utilizing machine learning algorithms to identify the maliciousness of URLs embedded in QR codes, and we have explored ways to integrate this with existing QR code readers. To this end, we constructed a dataset from 128,587 malicious URLs and 428,102 benign URLs, extracting 35 different features such as protocol and parameters, and used AutoML to identify the optimal algorithm and hyperparameters, achieving an accuracy of approximately 87.37%. Following this, we designed the integration of the trained classification model with existing QR code readers to implement a service capable of countering Qshing attacks. In conclusion, our findings confirm that deriving an optimized algorithm for classifying malicious URLs in QR codes and integrating it with existing QR code readers presents a viable solution to combat Qshing attacks.

Application and Performance Evaluation of Photodiode-Based Planck Thermometry (PDPT) in Laser-Based Packaging Processes (레이저 기반 패키징 공정에서 광 다이오드 기반 플랑크 온도 측정법(PDPT)의 적용 및 성능 평가)

  • Chanwoong Wi;Junwon Lee;Jaehyung Woo;Hakyung Jeong;Jihoon Jeong;Seunghwoi Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2024
  • With the increasing use of transparent displays and flexible devices, polymer substrates offering excellent flexibility and strength are in demand. Since polymers are sensitive to heat, precise temperature control during the process is necessary. The study proposes a temperature measurement system for the laser processing area within the polymer base, aiming to address the drawbacks of using these polymer bases in laser-based selective processing technology. It presents the possibility of optimizing the process conditions of the polymer substrate through local temperature change measurements in the laser processing area. We developed and implemented the PDPT (Photodiode-based Planck Thermometry) to measure temperature in the laser-processing area. PDPT is a non-destructive, contact-free system capable of real-time measurement of local temperature increases. We monitored the temperature fluctuations during the laser processing of the polymer substrate. The study shows that the proposed laser-based temperature measurement technology can measure real-time temperature during laser processing, facilitating optimal production conditions. Furthermore, we anticipate the application of this technology in various laser-based processes, including essential micro-laser processing and 3D printing.

CFD Analysis Study on Aqueous Film Foaming Foam Injection Optimization to Respond to Oil Fires in Naval Ship Compartment (해군 함정 격실 유류화재 대응을 위한 수성막포 분사 최적화에 대한 CFD 해석 연구)

  • Kil-Song Jeon;Hwi-Seong Kim;Jae-Ung Sim;Yong-Ho Yoo;Jin-Ouk Park
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.239-247
    • /
    • 2024
  • When a fire occurs on a naval vessel, rapid suppression and control are essential to mitigate potential human and material losses. Due to the nature of naval vessels, the risk of fuel fires is significant, making the use of aqueous film-forming foam (AFFF) crucial for effective fire suppression. Additionally, the possibility of fires occurring within compartments on the vessel must also be considered. Understanding the trajectory and application range of AFFF in such environments is vital, necessitating the design of firefighting systems tailored to compartmental conditions. In this study, an analysis was conducted to investigate the feasibility of applying spray height and angle for AFFF using computational fluid dynamics (CFD) methodology as a validation tool. Based on these findings, CFD analysis results applicable to compartment environments on naval vessels were obtained. These results will serve as the foundation for the development of firefighting systems capable of promptly responding to fuel fires within naval vessel compartments.