• Title/Summary/Keyword: 최적화법

Search Result 63, Processing Time 0.022 seconds

Studies on the Immobilization of Enzymes and Microoganism Part 1. Immobilizing Method of Glucose Oxidase by Gamma Radiation (효소 및 미생물의 고정화에 관한 연구 제1보. 방사선조사에 의한 Glucose Oxidase의 고정화법)

  • Kim, Sung-Kih
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • A new method for immobilization of glucose oxidate by the aerobic gamma radiation of synthetic monomers was developed. The radiocopolymerization was conducted aerobically at -70 to -8$0^{\circ}C$ with the mixture of several polyfunctional esters, acrylates and native enzyme. The retained activity of immobilized glucose oxidase was about 50 to 55% when a NK 23G ester, acrylamide-bis and water mixture (1:1:2) in cold toluene treated with 450 krad of gam-ma radiation. The radiation dose did not influence significantly to the enzyme activity. The solvents used to prepare the beads of glucose oxidase and monomers were toluene, n-hexane, petoleum ether and chloroform. 0.05M tris-gycerol (pH 7.0) was a more suitable bugger solution for immobilizing the enzyme than was 0.02M phosphate. Immobilization of glucose oxidase shifted the optimum pH for its reaction from 6.0 to 6.5. The pH profile for the immobilized enzyme showed a broad range of optimum activity while the native enzyme gave a sharp pick for its optimum pH value. The immobilized enzyme reaction temperature was at the range of 30~4$0^{\circ}C$.

  • PDF

Studies on the Production of Foods and Feeds Yeast from the Hydrolyzate of Corn Starch Cake (옥수수 전분박(澱粉粕)을 이용(利用)한 식사료(食飼料) 효모생산(酵母生産)에 관한 연구(硏究))

  • Sung, Nack-Kie;Kim, Myung-Chan;Ki, Woo-Kyung;Kim, Jong-Kyu;Yun, Han-Dae
    • Applied Biological Chemistry
    • /
    • v.19 no.4
    • /
    • pp.219-226
    • /
    • 1976
  • To meet the need of protein feed and fine more efficient ways of returning waste to resources, we have carried out the study of the production of yeast for foods and feeds from the corn starch cake. The present study includes the method for acid-hydrolysis, the selection of yeast capable of utilizing hydrolyzate of the corn starch cake, and culture condition of Candida tropicalis under the liquid culture and the semisolid culture. Obtained results were as follows. 1. Hydrochloric acid was more excellent on the hydrolysis of the corn starch cake than sulfuric acid, and the yield of sugar was maximum, 57.2%, when the corn starch cake was hydrolyzed with 1.0% of hydrochloric acid at 2.0kg/cm for 30 minutes. 2. As the acid solution content was increased, more sugar was liberatedfrom the mixture, until the acid solution-substrate ratio reached 10:1. Beyond this point, no further increase was observed. To prepare the cultural medium of semisolid fermentation, a acid solution to substrate ratio of 3:1 appeared to be optimum. 3. Out of 6 yeast strains, Candida tropicalis had excellent growth on the hydrolyzate of the corn starch cake, and optimum temperature and initial pH were $30^{\circ}C$ and 6.0 respectively. 4. Optimum liquid medium of Candida tropicalis is ures 0.3%, potassium phosphate monobasic 0.15g and magnesium sulfate 0.04g in 100ml of the hydrolyzate of the corn starch cake, while optimum semisolid medium is ammonium chloride 0.4g, potassium phosphate monobasic 0.1%, magnesium sulfate 0.04%. 5. Candida tropicalis could assimilate the sugar in the hydrolyzate up to more than 88.75%, and a yield of dry yeast reached 19.13% to the corn starch cake under the liquid culture. 6. Compared to the that of the untreated corn starch cake, the cellulose content of the semisolid fermented cake decreased by 3.76% to 14.7%, whereas dry yeast contents increased by 13.89%.

  • PDF

Evaluation of microplastic in the inflow of municipal wastewater treatment plant according to pretreatment methods (전처리 방법에 따른 하수처리장 유입수에서의 미세플라스틱 성상분석 평가)

  • Kim, Sungryul;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The amount of the plastic waste has been increasing according to global demand for plastic. Microplastics are the most hazardous among all plastic pollutants due to their toxicity and unknown physicochemical properties. This study investigates the optimal methodology that can be applied to sewage samples for detecting microplastics before discussing reducing microplastics in MWTPs. In this study, the effect of different pretreatment methods while detecting microplastic analysis of MWTP influent samples was investigated; the samples were collected from the J sewage treatment plant. There are many pretreatment methods but two of them are widely used: Fenton digestion and hydrogen peroxide oxidation. Although there are many pretreatment methods that can be applied to investigate microplastics, the most widely used methods for sewage treatment plant samples are Fenton digestion and H2O2 oxidation. For each pretreatment method, there were factors that could cause an error in the measurement. To overcome this, in the case of the Fenton digestion pretreatment, it is recommended to proceed with the analysis by filtration instead of the density separation method. In the case of the H2O2 oxidation method, the process of washing with distilled water after the reaction is recommended. As a result of the analysis, the concentration of microplastics was measured to be 2.75ea/L for the sample using the H2O2 oxidation method and 3.2ea/L for the sample using the Fenton oxidation method, and most of them were present in the form of fibers. In addition, it is difficult to guarantee the reliability of measurement results from quantitative analysis performed via microscope with eyes. A calibration curve was created for prove the reliability. A total of three calibration curves were drawn, and as a result of analysis of the calibration curves, all R2 values were more than 0.9. This ensures high reliability for quantitative analysis. The qualitative analysis could determine the series of microplastics flowing into the MWTP, but could not confirm the chemical composition of each microplastic. This study can be used to confirm the chemical composition of microplastics introduced into MWTP in the future research.