• 제목/요약/키워드: 최적학습률 Multilayer Perceptrons

검색결과 2건 처리시간 0.016초

다층퍼셉트론의 강하 학습을 위한 최적 학습률 (Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.99-105
    • /
    • 2004
  • 이 논문은 다층퍼셉트론의 학습을 빠르게 하기 위한 최적 학습률을 제안한다. 이 학습률은 한 뉴런에 연결된 가중치들에 대한 학습률과, 중간층에 가상의 목표값을 설정하기 위한 학습률로 나타난다. 그 결과, 중간층 가중치의 최적 학습률은 가상의 중간층 목표값 할당 성분과 중간층 오차함수를 최소화 시키고자하는 성분의 곱으로 나타난다. 제안한 방법은 고립단어인식과 필기체 숫자 인식 문제의 시뮬레이션으로 효용성을 확인하였다.

  • PDF

유전 알고리즘이 결합된 MLP와 HMM 합성 분류기를 이용한 근전도 신호 인식 기법 (An EMG Signals Classification using Hybrid HMM and MLP Classifier with Genetic Algorithms)

  • 정정수;권장우;류길수
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.48-57
    • /
    • 2003
  • 본 연구는 hidden Markov model(HMM)과 유전알고리 즘을 갖는 MLP(multilayer perceptron) 합성 분류기를 이용한 근전 신호의 인식에 관한 연구이다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상되게 된다. 근전 신호의 동적 특성은 연속 운동 인식처럼 신호의 길이 및 시작점과 끝점이 일정치 않고 시변성이 큰 경우에 반드시 고려되어야 하나, 일반 신경회로망에서는 이의 적용이 용이하지 않다. 따라서, 본 연구에서는 신호의 동적 특성에 대한 적응성을 갖는 HMM과 MLP 신경회로망을 결합시킨 구조를 갖는 인식기를 제안한다. 이러한 구조는 인식기의 입장에서 볼 때 HMM의 신호의 동적 특성에 대한 적응성과, MLP의 정적인 신호에 대한 우수한 분류력이 결합되어 동적인 신호에도 높은 인식율을 갖는 특성을 갖는다.

  • PDF