본 연구에서는 해안도시(부산광역시 수영구) 지역의 토지이용도와 미기상인자를 고려하여 증발산량을 산정하였으며, 증발산량 변동에 대한 미기상인자의 영향성을 구명하였다. 수영구 지역의 토지이용도와 미기상인자는 2001년 12월부터 2011년 11월에 관측된 일별 자료를 사용하였다. 토지이용도는 불투수(건물, 도로 등) 및 산림(임야), 초지(논밭, 공원 등), 수계(하천, 호수 등) 지역으로 분류하였으며, 4개 지역 특성을 고려한 최적의 추정식을 적용하여 증발산량을 산정하였다. 수영구 지역의 전체 증발산량은 4개 지역에서 산정된 증발산량에 토지이용 비율을 곱하여 구하였다. 연간 증발산량 변동은 1월부터 7월까지 증가하다가 8월부터 12월까지 감소하는 형태를 보였다. 수영구 지역에서 증발산량은 강수량의 약 13.3% 정도이었으며, 이는 연구지역의 72%에 해당하는 불투수 지역에서 배수로를 통한 물의 유출이 강우 발생 후 짧은 시간 동안 다량 발생하였기에 지속적인 증발산이 가능한 잠재수량의 저유량이 적었기 때문이다. 증발산량과 미기상인자 간의 상관분석을 수행하였으며, 증발산량과 이슬점 온도의 상관계수가 0.63으로 가장 높았다. 증발산량에 대한 기온 및 강수량, 순복사 인자의 상관계수는 0.5 이상으로 양의 상관성을, 기압 및 일조시간은 0.5 이상의 음의 상관성을 보였다. 증발산량에 대한 상관계수가 0.5 이상인 미기상인자(이슬점온도와 기온, 순복사, 기압, 강수량)에 대한 회귀 분석을 수행하였다. 이슬점온도와 기온, 순복사, 기압에 대한 증발산량 회귀함수 그래프는 강수의 유무에 따라 2가지 경향을 보였다. 이슬점온도에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=0.004x+0.7$, 무강수 시에는 $ET=0.25{\times}e^{0.04x}$로 추정되었으며, 결정계수는 각각 0.48과 0.96 정도로서 무강수 시에 높게 나타났다. 기온에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=0.004x+0.53$, 무강수 시에는 $ET=0.13{\times}e^{0.06x}$로 추정되었으며, 결정계수는 각각 0.39와 0.89 정도로서 무강수 시에 높게 나타났다. 순복사에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=0.79x+0.49$, 무강수 시에는 $ET=0.22x+0.03$로 추정되었으며, 결정계수는 각각 0.34와 0.89 정도로서 무강수 시에 높게 나타났다. 기압에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=-0.04x+37.91$, 무강수 시에는 $ET=5.18{\times}10^{22}{\times}e^{-0.05x}$로 추정되었으며, 결정계수는 각각 0.25와 0.45 정도로 나타났다. 강수량에 따른 증발산량 회귀함수는 $ET=0.23lnx+0.90$으로 추정되었으며, 결정계수 0.61정도 나타났다.
본 연구는 안동 하회마을의 최적의 조망점이자 요처인 옥연정사와 겸암정사를 포함한 부용대 일원의 식물상을 파악하고, 이를 근거로 민속마을이자 유네스코 세계문화유산에 포함된 부용대 일원의 식생 관리방안을 제시할 목적으로 시도되었다. 본 연구의 주요 결과는 다음과 같다. 안동 부용대 일원의 전체식물상은 89과 217속 251종 1아종 38변종 11품종으로 총 301분류군이 확인되었다. 부용대 일원의 대표적 식생은 소나무림이며, 겸암정사 주변은 굴참나무림, 부용대 하식애는 모감주나무림으로 각각 구분되었다. 전체식물상 중 희귀식물은 원지, 모감주나무 등 14분류군이, 특산식물은 병꽃나무 등 7분류군이 확인되었다. 식물구계학적 특정식물은 IV등급에 원지 등 4분류군, III등급에 금털고사리, 애기석위 등 10분류군, I등급에 시무나무, 묏대추 등 13분류군으로 총 32분류군이 확인되었다. 또한 석회암지대 지표식물은 금털고사리, 왕팽나무, 절국대, 더위지기 등 총 11분류군으로 확인되었다. 귀화식물은 야생팬지, 붉은서나물 등 25분류군으로 구분되었으며, 이중 생태계교란식물인 가시박의 침입이 확인되었다. 이에 따라 귀화율(NR)은 8.3%이며, 도시화지수(UI)는 7.8%에 해당된다. 부용대의 고유한 전통 식생으로서의 회복을 위해서는 소나무림 상층의 리기다소나무와 중층의 물오리나무 점진적인 간벌이 필요하며, 겸암정사 주변에서 발견된 가시박을 비롯한 귀화식물에 대한 점진적인 제거방법의 마련과 장기적인 모니터링을 통한 지속적인 관리방안이 요구된다. 특히 화천서원 주변에 의도적으로 도입된 관상 및 경작외래식물인 뚱딴지는 자생식물로 대체되어야 할 것이다. 한편, 이 지역 희귀 및 특산식물인 원지는 현자생지 보전, 추가 자생지 확인 및 종자확보 등 유전자원의 현지 내외 보전이 반드시 필요한 식물이며, 부용대 하식애지형 특성을 잘 보여주는 모감주나무를 비롯하여 금털고사리, 절국대, 묏대추, 애기석위, 왕팽나무의 적극적 보존이 요망된다. 또한 갈모바위 부근에서 층길에 이르는 구간에 군락형태로 유지되는 등나무도 당분간 보호 및 관찰이 필요하며, 더불어 하식애 옥연정사에서 겸암정사에 이르는 층길의 안전성 확보를 전제로 교육적 활용을 위한 안내 해설판이 요구된다.
본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.
최근 국토 모니터링, 지형 분석 등 많은 분야에서 고해상도 위성영상의 수요가 증가와 함께 기하보정의 필요성이 증가하고 있다. 자동 정밀 기하보정 방법으로 GCP(Ground Control Point) 칩과 위성영상간의 정합을 통해 지상기준점을 자동으로 추출하는 방법이 있다. 자동 정밀 기하보정은 GCP 칩과 위성영상의 정합 성공률이 중요하다. 따라서 제작된 GCP 칩의 정합 성능 평가가 중요하다. GCP 칩의 정합 성능 평가를 위해 국토관측 위성용으로 구축된 총 3,812점의 GCP 칩을 실험 자료로 사용했다. KOMPSAT-3A 영상과 Google Map의 GCP칩 정합 결과를 분석한 결과 유사한 결과를 얻을 수 있었다. 따라서 Google Map 위성영상으로 고해상도 위성영상을 충분히 대체할 수 있다고 판단했다. 또한 GCP 칩의 정합 성능 검증에 필요한 시간을 줄이기 위해 자동화된 방법으로 Google Map의 중심점과 오차 반경을 이용한 방법을 제시했다. 실험 결과 최적의 오차 반경은 17 pixel(약 8.5 m)로 설정하는 것이 가장 좋은 분류 정확도를 보였다. Google Map 위성영상과 자동화된 검증 방법으로 남한 전역에 구축된 GCP 칩 3,812개의 정합 성능 평가를 진행했으며 남한에 구축된 GCP 칩은 약 94%의 정합 성공률을 보였다. 이후 정합에 실패한 GCP 칩을 분석하여 주요 정합 실패원인을 분석하였다. 분석 결과 남한 전역에 구축된 GCP 칩 중 재제작이 필요한 GCP 칩을 제외한 나머지 GCP 칩은 국토위성영상 자동 기하보정에 충분히 사용할 수 있다.
현재까지 인간 시각 체계를 정확하게 반영하기 위한 이미지 평가 기법에 대한 연구가 많이 이루어져 오고 있다. SSIM은 인간의 시각 체계가 이미지의 구조적 정보에 예민하다는 점을 이용하여 구조적 정보를 이용하여 이미지를 평가하는 대표적인 인간 시각 체계를 만족시키는 평가 기법이다. 하지만 SSIM은 이미지의 색 차이를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해, HSI 색 공간을 활용한 SHSIM 기법이 제안되었으나 두 컬러 이미지 간 인지적 색 차이를 충분히 반영하지는 못하고 있다. 본 논문에서는 CIE Lab 색 공간을 도입하여 대응 되는 픽셀들의 인지적 색 차이를 계산하여 이미지 평가에 활용하는 방법을 제안한다. 그리고 연구를 더 확장하여, SVM 분류기를 활용하여 왜곡 종류에 따라 최적의 평가 수식을 적용하는 최적화 시스템을 제안한다. 제안하는 기법을 평가하기 위해, 이미지 평가분야에서 가장 많이 알려진 LIVE 데이터베이스를 사용하였으며 네 종류의 평가 기준들을 이용하였다. 실험 결과에서는 제안하는 기법이 다른 기법들보다 인간 시각 체계와 더 상관성이 높다는 것을 보여준다.
데이터 마이닝은 방대한 양의 데이터를 다루는 응용영역에서 학습과 함께 연구되어 실세계의 문제를 해결할 수 있는 구체적인 방법을 제시해 주고 있다. 데이터 마이닝을 위한 보편적인 방법으로 사용되어 온 클러스터 분석 방법은 데이터의 양이 많아질수록, 실세계에서 직접 얻은 데이터일수록 경계가 불분명하고 처리과정에서 많은 오차가 발생하게 되어 직접 적용하고자할 때 고려해야할 점이 많다. 이를 위하여 퍼지 개념이 도입된 퍼지 클러스터링 방법론은 클러스터 타당성문제와 함께 널리 연구되어왔다. 본 논문에서는 클러스터링의 결과가 만들어 내는 오류 값을 최소화하는 방향으로 학습하는 비교사 학습신경망에 의하여 클러스터링이 이루어지고 이를 퍼지 성능 측정자에 의하여 평가하면서 최적의 클러스터 수를 찾아가는 적응형 데이터 마이닝 모델을 제안하고자 한다 또한 뉴스그룹의 텍스트 데이터를 처리하여 문서분류에 활용할 수 있음을 보임으로 제안된 모델의 타당성을 확인하고자 한다.
오존층 파괴물질로 규명된 CDC 113의 대체 세정제를 수집하여 실험적인 방법으로 밀도, 표면장력, 굴절지수, 비점, pH, 점도, 인화점, 용해도를 측정하였다. 대체세정제는 크게 수계 세정제, 준수계 세정제, 알코올 및 케톤계 세정제, 할로겐 세정제로 나누어서 측정한 물성들을 비교하였다. 전자산업의 잔자회로기판(PCB)에 사용되는 flux의 주성분인 abietic acid와 각 세정제의 용해실험은 HPLC를 사용하여 용해도를 구하였다. 각 분류별 세정제는 장단점을 갖추고 있으며 최종 사용자는 물성에 의한 세정제의 효율성과 세정방법 뿐만 아니라 안정성, 경제성을 종합적으로 고려해야 한다. 본 연구의 목적은 시판중인 CFC 113의 대체 세정제를 수집하여 물성을 측정하고 비교함으로써 사용자가 원하는 최적의 대체 세정제를 선정하는 데 기본적인 자료를 제공하는 것이다.
하천환경조사는 하천의 전반적인 특성을 조사 분석하는 것으로 하천환경 조사결과는 하천관련사업의 기초자료로 사용된다. 하천환경조사의 기초조사에서는 현장답사를 통해 하천의 특성을 대략적으로 판단하고 하천 전구간의 물리적 구조와 식생의 분포, 중요 서식처 정보를 포함하는 RCS 지도(River Corridor Survey)를 작성한다. 기초조사를 위해서는 하천 전 구간에 대한 현장답사가 필요하기 때문에 많은 시간, 비용 그리고 인력이 필요하고, 육안 또는 사진을 통한 스케치로 이루어져 조사 결과가 정성적이고 작업자의 경험이나 능력에 따라 결과가 좌우된다는 한계가 있다. 따라서 하천환경조사를 좀 더 간편하고 과학적이며 경제적으로 조사하기 위해 최근 드론 영상을 이용한 조사 기술 개발에 대한 연구들이 증가하고 있다. 하지만 드론을 이용한 하천환경조사의 대부분은 RGB 영상을 이용하기 때문에 정밀한 하천환경 변화를 정량적으로 분석하는데 한계가 있다. 이를 극복하기 위한 대안으로 사람이 감지할 수 있는 빛의 영역 뿐 아니라 자외선과 적외선 영역의 분광특성을 이용하여 하천환경의 특성을 세밀하게 분류하는 것이 가능한 초분광센서를 드론에 탑재하여 하천환경을 조사하기 위한 기초 연구들이 시작되고 있다. 본 연구에서는 line scan 방식의 초분광센서를 드론에 탑재하여 초분광영상을 촬영하기 위한 드론 시스템을 구성하였고, 하나의 사진과 같이 초분광영상을 제작하기 위해 다양한 기하보정 기술을 적용하여 최적의 기하보정 방법을 제시하였다. 이를 위해 초분광영상의 기하보정은 각각의 초분광영상의 GCP와 대응점을 이용한 2차원 변환 방법 및 비선형 변환 방법을 적용하여 보정을 수행하였으며, 각 방법에 따른 정사보정 영상의 위치정확도를 검증하였다. 연구 결과 드론 기반의 초분광영상 촬영 및 기하 보정 방법을 제시하였다. 향후 하천환경조사 뿐만 아니라 다양한 분야의 원격탐사에 초분광영상을 활용하는데 도움이 될 것으로 기대한다.
최근 의료, 제조, 자율주행, 보안 등 다양한 분야에서 인공지능과 컨볼루션 신경망 등 딥러닝 기술을 활용한 연구들이 활발하게 진행되고 있으며, 사회 전반에 적지 않은 영향을 미치고 있다. 본 연구 또한 이러한 흐름에 맞춰서 고고학 유물 분류에 딥러닝을 활용해 보았다. 즉, 연구는 고고학 조사를 통해 출토된 고대 수막새의 이미지 분류에 딥러닝 기술을 적용하는 초보적 시도로서, 고구려, 백제, 신라 시대의 수막새 이미지를 CNN 모델로 학습시켜 분류를 진행하였다. 고구려, 백제, 신라 수막새 이미지 각각 100장씩 총 300장을 기반으로 기본 데이터셋을 형성하였고, 데이터 증강 기법을 활용하여 4배를 증가시킴으로써 총 1,200장을 데이터셋으로 구축하였다. 사전 훈련된 EfficientNetB0 모델의 전이학습을 통하여 모델을 구축한 후, 5겹 교차검증을 실시한 결과 평균 학습 정확도 98.06%, 검증 정확도 97.08%를 기록하였다. 또한 학습된 모델을 240장의 테스트 데이터셋으로 성능을 평가한 결과, 최소 91% 이상의 높은 정확도로 삼국의 수막새 이미지를 시대별로 구분할 수 있음을 확인하였다. 특히 학습률 0.0001에서 정확도 92.92%, 정밀도 92.96%, 재현율 92.92%, F1 점수 92.93%로 가장 우수한 성능을 보였는데, 이는 다양한 학습률 설정을 통하여 과적합과 과소적합 문제를 방지함과 동시에 최적의 매개변수를 찾는 과정에서 이루어졌다. 본 연구의 결과는 한국 고고학 자료의 분류에 딥러닝 기술 활용 가능성을 확인했다는 점에서 의의가 있다고 생각된다. 또한 기존에 축적·제작된 ImageNet 데이터셋 및 파라미터가 고고 자료 분석에도 긍정적으로 적용할 수 있음을 확인하였다. 이러한 접근은 향후 고고학 데이터베이스 축적이나 활용, 박물관의 유물 분류 및 정리 등 다양한 방식의 모델을 창출할 수 있을 것이다.
지형 정규화 기법은 영상 촬영 시의 광원, 센서 및 지표면 특성에 따라 발생하는 밝기값 상의 지형적인 영향을 제거하는 방법으로, 지형 조건으로 인해 동일 피복의 픽셀들이 서로 다른 밝기값을 지닐 때 그 차이를 감소시킴으로써 평면 상의 밝기값과 같아 보이도록 보정한다. 이러한 지형적인 영향은 일반적으로 산악 지형에서 크게 나타나며, 이에 따라 산불 피해 지역 추정과 같은 산악 지형에 대한 영상 활용에서는 지형 정규화 기법이 필수적으로 고려되어야 한다. 그러나 대부분의 선행연구에서는 중저해상도의 위성영상에 대한 지형 보정 성능 및 분류 정확도 영향 분석을 수행함으로써, 고해상도 다시기 영상을 이용한 지형 정규화 기법 분석은 충분히 다루어지지 않았다. 이에 본 연구에서는 PlanetScope 영상을 이용하여 신속하고 정확한 국내 산불 피해 지역 탐지를 위한 각 밴드별 최적의 지형 정규화 기법 평가 및 선별을 수행하였다. PlanetScope 영상은 3 m 공간 해상도의 전세계 일일 위성영상을 제공한다는 점에서 신속한 영상 수급 및 영상 처리가 요구되는 재난 피해 평가 분야에 높은 활용 가능성을 지닌다. 지형 정규화 기법 비교를 위해 보편적으로 이용되고 있는 7가지 기법을 구현하였으며, 토지 피복 구성이 상이한 산불 전후 영상에 모두 적용, 분석함으로써 종합적인 피해 평가에 활용될 수 있는 밴드 별 최적 기법 조합을 제안하였다. 제안된 방법을 통해 계산된 식생 지수를 이용하여 화재 피해 지역 변화 탐지를 수행하였으며, 객체 기반 및 픽셀 기반 방법 모두에서 향상된 탐지 정확도를 나타내었다. 또한, 화재 피해 심각도(burn severity) 매핑을 통해 지형 정규화 기법이 연속적인 밝기값 분포에 미치는 효과를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.