• Title/Summary/Keyword: 최소윤활

Search Result 37, Processing Time 0.023 seconds

A Study on the Oil Lubrication Characteristics of Pin Bush for a Connecting Rod (커넥팅로드용 핀부시의 윤활특성 해석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2009
  • In this paper, the hydrodynamic pressure and minimum oil film thickness of a pin bush bearing for a connecting rod have been analyzed as functions of the number of oil grooves and an arc length of oil grooves. The lubrication characteristic of a pin bush is governed by oil groove design factors, which are considered in this study. The most influential design parameter is a number of oil grooves, which is three oil grooves with an arc length of oil groove, 1/6($60^{\circ}$). This means that oil groove with a long arc length of a pin bush does not contribute to the hydrodynamic pressure development. Thus the optimal design of a pin bush is necessary with an increased number of oil grooves and a reduced arc length.

The Effect of Oil Rheology on Film Thickness in Engine Journal Bearing (윤활유의 유동특성이 기관 저어널 베어링의 유막두께에 미치는 영향)

  • 이동호;장병주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • Effect of Newtonian and non-Newtonian oils on minimum ol film thickness in engine journal bearing were investigated at various oil viscosities. The influence of oil viscosity and engine operating conditions on minimum oil film thickness of main bearing and con-rod bearing was examined. Minimum oil film thickness for Newtonian oils increased uniformly with kinematic viscosity. But the correlation between kinematic viscosity and minimum oil film thickness was very poor for non-Newtonian oils. According to the straight-line regression analysis for non-Newtonian oils, high temperature high shear viscosity at 1 $1{\times}10^6Sec^{-1}$, $150^{\circ}C$ increase the coefficient of determination from 0.41 to 0.77. Con-rod bearing showed better correlation between minimum oil film thickness and engine operating conditions than main bearing.

  • PDF

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF

A Study on The Optimization of Plastic Mold Steel Machining Using MQL Supply System (MQL 공급시스템을 이용한 플라스틱 금형강 가공 최적화에 관한 연구)

  • Hong, Kwang-Pyo;Song, Ki-Hyeok;Lee, In-Cheol;Kang, Dong-Sung;Chung, Jae-Hwa;Lim, Dong-Wook;Kim, Woon-Yong;Beck, Si-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.7-14
    • /
    • 2017
  • This study manufactured a minimum quantity lubrication (MQL) supply system and identified the optimal MQL machining cutting conditions for plastic mold steel (SCM440). A series of experiments were consisted of twice. Optimal cutting conditions were derived using the Taguchi method, and cutting force variance; surface roughness; tool wear; and cutting temperature in dry, wet, and MQL machining were measured experimentally for these optimal conditions. The measured results decreased from dry to wet and MQL machining, being particularly large for dry machining due to increased cutting time. Measured MQL machining metrics were similar to those for wet machining, particularly for surface roughness, which is an index of machining quality.

Well Trajectory Modelling Considering Torque and Drag (토크와 드래그를 고려한 시추궤도 모델링 연구)

  • Jihoon Kim;Junhyung Choi;Doyoung Kim;Taeil Park;Daesung Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.51-60
    • /
    • 2023
  • Unlike the vertical drilling in the directional drilling should be minimized torque and drag in the well trajectory that avoided problems such as drillstring transformation, casing wear and key-seating. These torque and drag magnitude is determined by variations such as the well trajectory geometry, drilling mud, drillstring type and kick-off point. Therefore, it is essential to consider these variations for designing directional well trajectory. In this study, it was selected well trajectory by the most common build-hold type well and calculated torque and drag on each section by Analytical friction model. Analysis indicates that torque and drag could be minimized by using high lubricity drilling mud, kick-off point appropriate according to the well geometry and possible minimize dogleg severity. The results of this study is useful to minimize torque and drag from directional well trajectory design.

Prediction of Consumed Electric Power on a MQL Milling Process using a Kriging Meta-Model (크리깅 메타모델을 이용한 MQL 밀링공정의 소비전력 예측 연구)

  • Jang, Duk-Yong;Jung, Jeehyun;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2015
  • Energy consumption reduction has become an important key word in manufacturing that can be achieved through the efficient and optimal use of raw materials and natural resources, and minimization of the harmful effects on nature or human society. The successful implementation of this concept can only be possible by considering a product's entire life cycle and even its disposal from the early design stage. To accomplish this idea with milling, minimum quantity lubrication (MQL) strategies and cutting conditions are analyzed through process modeling and experiments. In this study, a model to predict the cutting energy in the milling process is used to find the cutting conditions, which minimize the cutting energy through a Kriging meta-modeling process. The MQL scheme is developed first to reduce the amount of cutting oil and costs used in the cutting process, which is then employed for the entire modeling and experiments.

A Study on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine (엔진 연결봉 베어링의 최소 유막 두께에 관한 연구)

  • Choi, Jae-Kwon;Heo, Gon;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.39-53
    • /
    • 1993
  • The minimum oil film thickness(MOFT) in the connecting-rod bering of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film charactrtistics. And cylinder pressure, crank-pin surface temperature and bearing tenp ture are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable detmuuination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

  • PDF

The Effect of a Sealed Cover and POSS-type Cutting Oil on MQL Drilling (MQL드릴링 가공에서 밀폐커버와 타입 절삭유의 효과)

  • Park, Ki-Beom;Cho, Young-Tae;Chin, Dong-Soo;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.77-82
    • /
    • 2016
  • When drilling through Inconel 601 nickel-chromium-based alloys, a large amount of cutting oil is required to prevent tools from wear and fracturing due to heat buildup resulting from the high temperature resistance and toughness of this alloy. However, cutting oil supply has become a factor compromising the machining environment, and this has caused attention to shift to a more environmentally friendly cutting fluid supply system called minimum quantity lubrication (MQL). Our aim in this study was to find a more efficient drill processing method using MQL, and to verify its performance. To that end, we proposed a sealed cover, a step feed, and POSS-type cutting oil as measures to increase the effectiveness of MQL in view of the cutting force and tool wear, and established an improvement in efficiency using the proposed measures.

Efficient MQL-based Drilling of Inconel 601 (인코넬 601의 효율적인 MQL드릴링 가공)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In drilling Inconel 601, which is used for compressor cases in aircraft engines, a lot of cutting oil must be supplied. This prevents tools from wear and fracture due to the heat buildup resulting from the high-temperature resistance and toughness of this alloy. However, the cutting oil supply has compromised the machining environment. This has caused attention to shift to an environmentally friendly cutting fluid supply system called the Minimum Quantity Lubrication(MQL) system. The aim of this study was to find a more efficient drill processing method using MQL and to verify its performance. To that end, the properties of Inconel that make it difficult -to -drill were studied by a comparison with the drilling of SM45C. Specific factors (i.e., cutting force and tool wear) were examined in relation to the conditions in the MQL-based drilling system. Based on these results, a sealed cover and step feed were proposed as measures to increase the effectiveness of the MQL system. The efficiency of the proposed method was established.

The Effect of Surface Roughness according to Machining Conditions of Test Specimen for Precision Micro-milling Machining (미세정밀밀링 가공을 위한 검사시편의 가공조건에 따른 표면거칠기에 대한 영향 분석)

  • Sim, Min-Seop;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • Recently, many researchers and industry are looking for ways to decrease the use of lubricants because of economical and environmental reasons. One of the lubrication technologies is the MQL method. This study presents a research of MQL and Wet milling processes of Al 6061 material. For this experiment, the test specimen is suggested, and various machining conditions are applied. And, shape of micro-pattern which has been recently spotlighted is included in the test specimen. In order to compare MQL with Wet machining, several milling experiments were carried out, varying feed rate, cutting speed, depth of cut, etc. Finally, the surface roughness results of machining tests according to the process conditions were measured. It is expected that the results of machining experiments can be used to predict the surface roughness of various MQL milling processes.