• Title/Summary/Keyword: 최소유속

Search Result 160, Processing Time 0.032 seconds

A Study on Fire ventilation design of road tunnel (도로터널에서의 화재환기 설계에 관한 연구)

  • Kim, Myung-Bae;Choi, Byung-Il;Choi, Jun-Seok;Han, Yong-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • The several assumptions and design parameters to determine the ventilation rate in tunnel ventilation system were examined. In longitudinal ventilating tunnel, the ventilation rate has been determined by the critical velocity above which the smoke propagation to the upstream of ventilating air is prevented. Based upon the examination of assumptions and experimental results, we suggested the improved method to determine the critical velocity. In transverse ventilating tunnel, we found that the ventilation rate has been determined in accordance with the custom rather than fire-smoke dynamics such as the critical velocity in the longitudinal ventilating tunnel. It is because the ventilation rate in the transverse ventilation system has been determined by considering only the ventilation of contaminant by vehicle. To improve the ventilation design parameters based upon the fire-smoke dynamics, we conducted model tunnel fire experiments. From the experimental results, smoke propagating distance and smoke filling were suggested as the design parameter to determine the ventilation rate in transverse ventilating tunnel. And tunnels in Europe designed by the custom is found to have the dangerous nature in view of fire safety.

  • PDF

Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties (동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Han, Sang-Hun;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.97-108
    • /
    • 2012
  • Dynamic responses were measured using long-term monitoring system for Uldolmok tidal current pilot power plant which is one of jacket-type offshore structures. Among the dynamic quantities, the tilt angle was chosen because the low frequency response components can be precisely measured by dynamic tiltmeter, and the natural frequencies and modal damping ratio were successfully identified using proposed LS-FDD (least squared frequency domain decomposition) method. And the effects of tidal height and tidal current velocity on the variation of natural frequencies and modal damping ratios were investigated in time and frequency domain. Also the non-parametric models were tested to model the relationship between tidal conditions and modal properties such as natural frequencies and damping ratios.

Analysis of habitat environment characteristics for Endangered Fish (Liobagrus Obesus) using MD-SWMS (MD-SWMS를 이용한 멸종위기 어종(퉁사리)의 서식환경 특성 분석)

  • Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Lee, Yong-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.745-749
    • /
    • 2012
  • 국내 주요하천은 지속적인 산업화와 난개발로 인해 생태계파괴 및 수변생물의 서식처 환경 악화로 하천 생태계에 많은 악영향을 받고 있다. 그러나 1990년대 이후 국내에서는 하천의 기능과 생물의 다양성, 하천환경 및 생태학적인 가치와 중요성에 대한 인식이 매우 커짐에 따라 하천의 생태적 기능을 매우 중요시 하고 있으며, 하천의 난개발로 인한 피해를 복원하기 위해 활발한 연구가 진행되고 있다. 대표적인 연구로 생태계 건전화 개념을 도입하여 담수성 어류 서식처 제공 및 이동에 필요한 유량을 산정한 한국 수자원공사(1995)의 연구가 있으며, 김규호 등(1996a, 1996b)은 물고기 서식처 환경 중 특히 수심과 유속 등 수리조건을 유지하기 위한 최소유량 산정 방법을 제시하였다. 또한 노경범(2011)은 섬진강의 하천환경 회복을 위한 연구대상 구간에서의 대표어종을 선정하여 서식처 특성 파악을 위해 하천 특성을 연구하였다. 이와 같이 현재 국내에서도 하천의 기능과 생태학적 기능을 위한 노력과 연구가 진행되고 있다. 그러나 생태학적 서식처 연구에서는 아직까진 미진한 부분이 많이 있다. 그 예로 보호종이나 멸종위기어종과 같은 생물의 서식처 확보를 위한 연구가 아직까지는 많은 노력과 연구가 필요한 상태이다. 본 연구에서는 환경부에서 지정한 멸종위기 1급 어종인 퉁사리를 대상으로 서식환경 특성 연구를 진행하였으며, 퉁사리의 생태학적 서식특성과 현재 지석천 상류 유역에서 관찰되고 있는 서식구간을 중심으로 MD-SWMS (Multi-Dimensional, Surface Water Modeling System) 모형을 이용하여 수리특성 분석을 수행하였다. 이를 위해 하상재료 입도분석을 실시하였으며, 그 결과 입도가 큰 굵은모래 및 잔자갈, 굵은자갈로 구성되어 있음을 알 수 있었다. 또한, 수리학적 특성분석결과 서식구간 내에서는 비교적 빠른 유속이 나타났다. 이러한 퉁사리의 서식환경의 특성 분석으로 서식구간 내 입도가 큰 하상재료로 구성되어 있으며, 퇴적구간이 생성되지 않을 정도의 유사이송량과 유속이 필요할 것으로 분석되었다. 향후 퉁사리의 장기적인 서식환경 조성과 보존을 위해 대상구간의 유사이송의 연구와 실측 및 수변환경 모니터링을 통한 다양한 연구가 진행되어야 할 것으로 판단된다.

  • PDF

A Study on the Flow Characteristics according to the Change of Structure in Filtration Using the Numerical Model (수치모형을 이용한 여과기 내 구조 변경에 따른 유동특성 연구)

  • Kim, Taewon;Song, Sooho;Choi, Changhyung;Park, Youngjin;Kim, Jiho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.285-285
    • /
    • 2017
  • 최근 전 세계적으로 심각해지는 물 부족 현상과 수질오염으로 대량의 원수를 빠른 시간 내에 여과하기 위한 여과장치의 개발 및 효율성 향상을 위한 연구의 필요성이 증가되고 있다. 특히 여과필터의 내부구조에 의해 유동이 편중되는 현상이 발생하면 여과효율 및 여과필터 유지관리에 문제가 발생되기 때문에 최적의 여과필터를 설계하는 것이 중요하다. 이에 본 연구에서는 수리모형실험으로 검토하기에 어려움이 있는 여과기 내부구조에 대한 유동특성을 수치해석을 이용하여 검토하였다. 수치해석은 유한요소법 기반의 수치모형으로 여과기 내부를 상세하게 모의할 수 없기 때문에 유한체적법 기반인 ANSYS CFX 모형을 이용하였다. 여과기 내 여과필터는 두께 2.0 mm, 공극율 25%로 가정하고 다공성 기법(porous media)을 적용하였다. 검토를 위한 경계조건은 유입부에 목표 취수량, 유출부에 대기압 조건을 적용하였으며, 여과기에 비해 매우 작게 구성된 여과필터 내부의 유동특성을 검토하기 위해 여과기는 최소 3.0 mm, 여과필터는 1.0 mm의 격자를 적용하였다. 현재 실제 여과시설에 적용되고 있는 여과기 제품 형상을 기준으로 여과기 내부 흐름공간의 크기 및 각도 조정에 따른 유동특성을 검토하여 여과효율을 비교하였으며 통과유량, 유속, 유속벡터 등을 검토하여 균등한 유량과 유속이 발생되는 최적의 여과장치 구조를 도출하였다. 본 연구에서 여과기 내부 구조 변경에 따른 유동특성 검토를 통해 도출된 최적의 여과기 내부크기 및 각도에 대한 설계인자는 여과기 내 여과필터의 효율을 증가시킬 뿐만 아니라 내구성 증진에 도움이 될 것으로 예상된다.

  • PDF

Comparative Analysis of Environmental Ecological Flow Based on Habitat Suitability Index (HSI) in Miho stream of Geum river system (서식지적합도지수(HSI)에 따른 환경생태유량 비교 분석 : 미호천을 중심으로)

  • Lee, Jong Jin;Hur, Jun Wook
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • In this study, the Habitat Suitability Index (HSI) was calculated in the Miho stream of the Geum river system, and the environmental ecological flow by point was evaluated. Two points (St.3 and St.8) representing the up and downstream of Miho Stream were selected, in order to calculate the Habitat Suitability Index, the depth and velocity at point where each species is appeared were investigated. The Habitat Suitability Index (HSI) was calculated by the Washington Department of Fish and Wildlife (WDFW) method using the number collected by water depth and velocity section and the results of the flow rate survey. Two target species were selected in this study; dominant species and swimming species sensitive to flow. In the case of a single species of Zacco platypus, the water depth was 0.1 - 0.5 m and the velocity was 0.2 - 0.5 m/s. For species of swimming fish, the water depth was 0.2 - 0.5 m and the velocity was 0.2 - 0.5 m/s. The discharge-Weighted Useable Area (WUA) relationship curve and habitat suitability distribution were simulated at the Miho Stream points St.3 and St.8. At the upstream St.3 of Miho Stream, the optimal discharge was simulated as 4.0 m3/s for swimming fishes and 2.7 m3/s for Zacco platypus. At the downstream point of St.8, species of swimming fish were simulated as 8.8 m3/s and Zacco platypus was simulated as 7.6 m3/s. In both points, the optimal discharge of swimming fish was over estimated. This is a result that the Habitat Suitability Index for swimming fish requires a faster flow rate than the habitat conditions of the Zacco platypus. In the calculation of the minimum discharge, the discharge of Zacco platypus is smaller and is evaluated to provide more Weighted Useable Area. In the case of swimming fishes, narrow range of depth and velocity increases the required discharge and relatively decreases the Weighted Useable Area. Therefore, when calculating the Habitat Suitability Index for swimming fishes, it is more advantageous to calculate the index including the habitat of all fish species than to narrow the range.

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

A Study on Seawater Flow Characteristics inside the Shrouds used in Tidal Current Generation Systems for Various Geometric Angles under Constant Tidal Current Velocity (조류발전 시스템용 쉬라우드의 형상각도별 일정 조류속도장 내 해수유동 특성연구)

  • Kim, Jong-Won;Lee, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Numerical analyses through Computational Fluid Dynamics have been performed to investigate the seawater flow field characteristics for various shrouds used in horizontal axis tidal current turbine systems. Seawater flow characteristics are largely influenced under constant tidal current velocity by the shroud geometry and there is considerable difference in fluid velocity distributions around the shrouds. Especially the location and magnitude of maximum seawater flow velocity directly affect turbine performance for power generation. For the cylinder-diffuser type shroud system whose cylinder and diffuser parts have the same length accelerated flow region is formed in the overall cylinder part while maximum velocity in the nozzle-diffuser type whose nozzle and diffuser parts have the same length with symmetry, locally appears near the minimum sectional area. In case of cylinder-diffuser type shroud fluid velocity increases rather high compared with current velocity. And fluid velocity at the centerline gradually increases from the entrance, and then decreases rapidly after reaching a peak close to the middle of the cylinder part unlike the nozzle-diffuser while there is not much variation near the rear of the shroud. These results of the seawater flow characteristics with various shroud geometries can be applied to optimal design for the development of efficient tidal current power generation systems.

Modeling of thermal fluidized desorption for diesel-oil contaminated soils (Diesel-oil에 오염된 토양의 유동상 열탈착 모델링)

  • 이상화;김병욱;이상득;박달근;이중기
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Fluidized-bed thermal desorber coupled with a heat pipe was investigated for the remediation of soil contaminated with diesel oils. Thermal gravimetric analysis by Cahn-balance indicated that the desorption of diesel oils from the soil particles was mainly governed by the internal diffusion at low concentration of less than 0.5 wt. % of oils in the soil particles. In fluidized-bed experiments. increase of fluidizing gas velocity reduced the residual oils of the contaminated soils, the increase of soil feed rate decreased efficiency of fluidized-bed desorber. A mathematical model was developed by incorporating Fickian diffusion kinetics into the Kunii-Levenspiel model Simulation results showed reasonable agreement for the performance of fluidized-bed thermal desorber.

  • PDF

Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds (삼상 Swirling 유동층에서 열전달 특성)

  • Son, Sung-Mo;Shin, Ik-Sang;Kang, Yong;Cho, Yong-Jun;Yang, Hee-Chun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

A Study on Injection Nozzle and Internal Flow Velocity for Removing Air Bubbles inside the Sample Tanks during Hydraulic Rupture Test (수압파열시험 시 시료 탱크 내부 기포 제거를 위한 주입 노즐 및 내부 유속 연구)

  • Yeseung, Lee;Hyunseok, Yang;Woo-Chul, Jung;Dong Hoon, Lee;Man-Sik, Kong
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.9-15
    • /
    • 2022
  • In order to verify the durability of the high-pressure hydrogen tank in the operating pressure range, a hydraulic rupture test should be performed. However, if the bubbles generated by the initial injection process of water are attached to the inner wall of the tank and remain, a sudden pressure change of the bubbles during the rupture of the pressurized tank may cause shock and noise. Therefore, in this study, the flow velocity required to remove the bubbles remaining on the inner wall of the tank was predicted through simplified formulas, and the shape of the injection nozzle to maintain the flow velocity was determined based on the shape of the hydrogen tank for the hydrogen bus. In addition, a numerical model was developed to predict the change in flow velocity according to the inlet pressure, and an experiment was performed through a model tank to prove the validity of the prediction result. As a result of the experiment, the flow velocity near the tank wall was similar to the predicted value of the analysis model, and when the inlet pressure was 1.5 to 5.5 bar, the minimum size of the removable bubble was predicted to be about 2.2 to 4.6 mm.