• Title/Summary/Keyword: 최상부분집합선택

Search Result 2, Processing Time 0.014 seconds

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

Partial Dimensional Clustering based on Projection Filtering in High Dimensional Data Space (대용량의 고차원 데이터 공간에서 프로젝션 필터링 기반의 부분차원 클러스터링 기법)

  • 이혜명;정종진
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.4
    • /
    • pp.69-88
    • /
    • 2003
  • In high dimensional data, most of clustering algorithms tend to degrade the performance rapidly because of nature of sparsity and amount of noise. Recently, partial dimensional clustering algorithms have been studied, which have good performance in clustering. These algorithms select the dimensional data closely related to clustering but discard the dimensional data which are not directly related to clustering in entire dimensional data. However, the traditional algorithms have some problems. At first, the algorithms employ grid based techniques but the large amount of grids make worse the performance of algorithm in terms of computational time and memory space. Secondly, the algorithms explore dimensions related to clustering using k-medoid but it is very difficult to determine the best quality of k-medoids in large amount of high dimensional data. In this paper, we propose an efficient partial dimensional clustering algorithm which is called CLIP. CLIP explores dense regions for cluster on a certain dimension. Then, the algorithm probes dense regions on a next dimension. dependent on the dense regions of the explored dimension using incremental projection. CLIP repeats these probing work in all dimensions. Clustering by Incremental projection can prune the search space largely and reduce the computational time considerably. We evaluate the performance(efficiency, effectiveness and accuracy, etc.) of the proposed algorithm compared with other algorithms using common synthetic data.

  • PDF