• Title/Summary/Keyword: 최대 전단탄성계수

Search Result 71, Processing Time 0.018 seconds

A numerical analysis study on the effects of rock mass anisotropy on tunnel excavation (암반의 이방성이 터널 굴착에 미치는 영향에 대한 수치해석적 연구)

  • Ji-Seok Yun;Sang-Hyeok Shin;Han-Eol Kim;Han-Kyu Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • In general tunnel design and analysis, rock masses are often assumed to be isotropic. Under isotropic conditions, material properties are uniform in all directions, leading to a higher evaluation of tunnel stability. However, actual rock masses exhibit anisotropic characteristics due to discontinuities such as joints, bedding planes, and faults, which cause material properties to vary with direction. This anisotropy significantly affects the stress distribution during tunnel excavation, leading to non-uniform deformation and increased risk of damage. Therefore, thorough pre-analysis is essential. This study analyzes the displacement and stress changes occurring during tunnel excavation based on rock anisotropy. A three-dimensional numerical analysis was performed, selecting anisotropy index and dip angles as variables. The results showed that as the anisotropy index increased, the displacement in the tunnel increased, and stress concentration became more pronounced. The maximum displacement and shear stress were observed where the dip planes met the tunnel.