• Title/Summary/Keyword: 최대풍속

Search Result 359, Processing Time 0.025 seconds

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.

Characteristics of the Land and Sea Breeze on Cheju island , Korea (제주도 지방의 해륙풍의 특성)

  • 김유근
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.41-55
    • /
    • 1991
  • A study was done to investigate characteristics of the land and sea breeze over Cheju island on the basis of surface meteorological data collected from 1977 to 1986. The results are summarized as follows: The frequency of the land and sea breze was highest in August followed by September, October, May and November in descending order. This indicates that the frequency of the land and sea breeze is higher in fall than in spring, and lowest in winter. The sea breeze began much earlier than any other regions of Korea all the year round, and it began about 30 minutes earlier and ended one hour later in the northern coast than in the southern coast of Cheju island. Meanwhile, the land breeze began about one hour earlier in the southern coast than in the northern coast and ended almost at the same time in both coasts. The annual mean duration of the sea breeze was about one hour longer in the northern coast than in the southern coast, but the land breeze showed an opposite trend. The duration of the sea breeze was longer in summer than in winter and again the land breeze was opposite. Transition period from the sea to the land breeze was relatively long in summer and shout in winter, but transition period from the land to the sea breeze was not different between seasons. The time for a maximum velocity of the sea breeze came earlier in the southern coast than in the northern coast, but that of the land breeze came almost at the same time in both coasts with no seasonal variations. Monthly mean maximum velocity of the sea breeze was greater than that of the land breeze.

  • PDF

The Characteristics of Disaster by Track of Typhoon Affecting the Korean Peninsula (한반도 영향 태풍의 이동경로에 따른 재해 특성)

  • Ahn, Suk-Hee;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of disaster associated with typhoon passed through the sea areas excluding the South Sea around the Korean Peninsula. First, Korean peninsula-affecting typhoons were divided into their track patterns of passing through the Korean West Sea and East Sea based on typhoon data from 1951 to 2006 provided by Regional Specialized Meteorological Center(RSMC)-Tokyo. Then, annual and monthly frequency and intensity of typhoon in each pattern was examined. In particular, typhoon related damages during the period of 1973 to 2006 were analyzed in each case. Results showed that since early 1970, in the West Sea case, typhoon becomes weaker without significant change in frequency, while in the East Sea case, it becomes stronger with an increasing trend. It is also found that the high amount of typhoon damage results from the submergence of houses and farmlands in the East Sea case, while it is due to the breakdown of houses, ships, roads and bridges in the West Sea case. In addition, it is revealed from the analysis of rainfall and maximum wind speed data associated with typhoon disasters that the main cause of occurring typhoon disasters seem to be qualitatively related to strong wind in the West Sea case and heavy rainfall in the East Sea case.

Study on the Evaluation of Radiant Heat Effects of Oil Storage Tank Fires Due to Environmental Conditions (환경조건에 따른 유류저장탱크 화재의 복사열 영향 평가 연구)

  • Lee, Jeomdong;Ryu, Juyeol;Park, Seowon;Yoon, Myong-O;Lee, Changwoo
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • In this paper, the risk of damages to humans and properties due to fire explosions in gasoline storage tanks is identified, and the effects of radiant heat on adjacent tanks are evaluated to present the necessary area to secure safety. A simulation was conducted to evaluate the effect of radiant heat (Maximum emission) on adjacent tanks in an oil storage tank fire due to environmental conditions (Wind speed and temperature) in the Northern Gyeonggi Province. The result indicated that the radiant heat released in the fire of an oil storage tank was increased by approximately 1.9 times by the maximum wind speed and the difference occurred in the range of 700~800 kW by the maximum temperature. If a storage tank fire occurs, securing approximately 34.4 m of holding area is necessary. In the future, evaluating the radiant heat emitted by the fire of gasoline storage tanks will be required by applying various environmental conditions, and through this, research on specific and quantitative holding area is required.

Typhoon Intensity Analysis using GMS Meteorological Satellita Image Data (GMS 기상위성 영상자료를 이용한 태풍강도 분석)

  • 서애숙;김동호;박경선
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.17-27
    • /
    • 1995
  • One of the world widely used methods in determining the intensity of a typhoon is Dvorak's technique. By applying the Dvorak's method to the typhoons which affected our country in various degress and extents without regard to their individual severity, we estimated their intensity for six different cases of typhoons. We have derived a regression equation of estimating the central pressures and maximum wind speeds for the six selected typhoons. Their intensity was estimated from the Dvork's method using GMS satellite image data. The derived equation has tested to typhoon ORCHID and the computed values have been compared with the direct observations in its central pressure and maximum wind speed. The computed values in the Dvork's method are smaller in their magnitudes than the observed corresponding values. But their relative magnitudes do not change so much at each different time step. But our results are significantly different from those of NOAA and JMA. The cause of differences are not investigated in depth in this analysis.

Analysis of Hydrological Characteristics of the Chantancheon Catchment 2017 (2017년 차탄천 유역의 수문학적 특성 분석)

  • Kim, Dong Phil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.341-345
    • /
    • 2018
  • 우리나라는 전 국토의 70%가 산지이고 하천경사가 다른 나라에 비해 상대적으로 급하여 홍수 관리에 매우 불리한 조건을 가지고 있으며, 특히 홍수기간의 집중호우 및 돌발홍수는 인명과 재산의 막대한 피해를 입히고 있다. 최근은 기후변화로 인하여 극심한 홍수, 가뭄 등 재해의 발생빈도가 증가하는 추세로 기후변화의 영향을 최소화할 수 있는 수재해 방재관리가 필요한 상황이다. 중 대하천의 경우에는 비교적 수재해 방재관리가 잘 이루어지고 있으나, 소하천(일부 중하천 포함)의 경우에는 취약한 구조를 보이고 있다. 특히 홍수기간(7월~9월)의 인명과 재산의 피해는 주로 소하천 위주로 발생하고 있으며, 사전 사후의 체계적인 대응이 이루어지지 못하고 있다. 수재해 방재관리를 위해서는 일차적으로 수문자료의 획득에 있으며, 그 이후 해당 유역에 적합한 수재해 대응을 위한 체계적인 방법론과 방재시스템 개발 운영이 수반되어야 안전한 방재관리를 할 수 있다. 따라서 수재해 방재관리 체계를 구축하기 위해서는 중 소규모 유역 단위를 대상으로 지속적이고 신뢰성 있는 자료의 획득과 축적이 중요하므로 중 소규모 유역 단위의 대표성 있는 시험유역의 운영은 매우 의미가 있다고 볼 수 있다. 본 논문에서는 한국건설기술연구원에서 운영하는 차탄천 유역(유역면적 $190.64km^2$, 유로경사 0.96%, 경기도 연천군 소재)의 신뢰성 높은 2017년 관측자료를 이용하여 강우특성, 유출특성, 증발산량 등 수문특성을 분석하였으며, 과거 관측결과와 비교하였다. 강우특성 분석으로는 호우사상 분리, 주요 호우사상 분석, 지속기간별 최대강우량, 시간분포 등이 있다. 2017년은 2016년보다 최대 강우지속기간과 평균 강우지속기간은 크게, 최대 강우강도는 작게, 평균 강우강도는 크게 나타나는 호우의 특징을 보이고 있다. 2017년의 하천유출률은 강우량 대비 53.1%(장진교, 유역출구)와 60.4%(보막교, 중간소유역)로 과거 5년간의 평균 유출률인 장진교(52.4%)와 4년간의 평균유출률인 보막교(58.8%)와 비슷한 값을 보인다. 강우유출특성 분석결과 연간 강우량은 다소 적었지만, 평균 강우강도의 증가에 기인하여 2017년의 연간 하천유출량은 2016년보다 장진교는 약 39.5%의 증가와 보막교는 약 2.9% 감소가 하였다. 수문학적 동질성 갖는 유역에서 하천유출량의 차이는 강우량 발생 시기(2016년의 경우는 10월에 215.7mm의 강우량 발생)와 토지이용(중 하류부 농경지 발달)의 차이에 기인한다고 볼 수 있다. 그리고 2017년의 증발산량은 강우량 대비 장진교는 38.4%, 보막교 35.1%로 2016년 장진교의 50.1%보다는 감소하고, 보막교의 35.4%와는 비슷한 값을 보인다. 온도, 습도, 풍속, 일조시간에 영향을 받는 증발산량은 2016년 대비 기온(일최고/일최저)의 감소(90.6%) 습도(일최대/일평균/일최저)의 감소(98.5%), 일평균 풍속의 감소(54.7%)에 기인하여 적은 증발산량을 보이는 것으로 분석되었다. 이와 같이 산정된 수문자료는 수재해 방재를 위한 기초자료로 매우 유용하게 활용되므로 지속적인 시험유역의 운영은 매우 필요하다.

  • PDF

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Analysis of the efficiency of natural ventilation in a multi-span greenhouse using CFD simulation (CFD 시뮬레이션을 이용한 연동형 온실 내 자연환기의 효율성 분석)

  • Short, Ted H.
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • Natural ventilation in a four and one-half span, double polyethylene commercial greenhouse was investigated with actual data collected at Quailcrest Farm near Wooster, Ohio. Moreover, a computational fluid dynamics (CFD) numerical technique, FLUENT V4.3, was used to predict natural ventilation rates, thermal conditions, and airflow distributions in the greenhouse. The collected climate data showed that the multi-span greenhouse was well ventilated by the natural ventilation system during the typical summer weather conditions. The maximum recorded air temperature difference between inside and outside the greenhouse was 3.5$^{\circ}C$ during the hottest (34.7$^{\circ}C$) recorded sunny day; the air temperatures in the greenhouse were very uniform with the maximum temperature difference between six widely dispersed locations being only 1.7$^{\circ}C$. The CFD models predicted that air exchange rates were as high as 0.9 volume per minute (A.C. .min$^{-1}$ ) with 2.5m.s$^{-1}$ winds from the west as designed.

  • PDF

A Study on Lashing Standards for Car Ferry Ships Sailing in Smooth Sea Areas (평수구역을 운항하는 여객선의 차량고박 기준에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, cargo lashing has received much importance, to help prevent the sinking of passenger ships due to the failure of vehicle and cargo lashing during the transshipment of cargo. Consequently, the standards for lashing equipment and the structure of car ferries have been revised. According to the current standards, all vehicles loaded on a car ferry sailing in smooth sea areas must be secured if the wind speed and wave height exceed 7 m/s and 1.5 m, respectively. In this study, we measured the roll and pitch of a passenger ship sailing in smooth sea areas, and compared the measurements with the results of the New Strip Method (NSM). The vessel had a maximum pitch of 1.41° and a maximum roll of 1.37° at a wind speed of 6-8 m/s and a wave height of 0.5-1.0 m, and a maximum pitch of 1.49° and a maximum roll of 2.43° at a wind speed of 10-12 m/s and a wave height of 1.0-1.5 m. A comparison of the external forces due to the motion of the hull and the bearing capacity without lashing indicated that the bearing capacity was stronger. This suggests that vehicles without lashing will not slip or fall due to weather conditions. In future, the existing vehicle lashing standards can be revised after measuring the hull motions of various ships, and comparing the external force and bearing capacity, to establish more reasonable requirements.

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.