• Title/Summary/Keyword: 최대열부하

Search Result 4, Processing Time 0.024 seconds

Design Temperature and Absolute Humidity for Peak Cooling and Heating Load Calculation with ETD Method (실효온도차법에 의한 최대열부하 계산용 온습도에 관한 연구)

  • Kim, D.C.;Seo, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.278-284
    • /
    • 1993
  • A simplified TAC method was developed for the selection of design temperature and absolute humidity for peak cooling and heating load calculation with ETD method. And the design data of the 11 major cities in Korea were obtained. Based on the simplified TAC method, the design data for summer and autumn cooling season were selected by the TAC 5.0% of July through August and TAC 5.0% of October, respectively. But the design data for winter heating season were selected by the conventional TAC 2.5% of the full winter season.

  • PDF

Comparative Studies on Heating and Cooling Loads' of a Building Varied by Annual Weather Data (연도별 기상데이터를 활용한 건물의 냉.난방부하 특성 비교)

  • Lee, Ji-Hoon;Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.265-270
    • /
    • 2011
  • The purpose of this study is to compare and analyze the differences of a building's heating and cooling loads depending on the weather variation. Followings are the results. The temperature, humidity and wind speeds of standard year are bigger than those of 2006~2009. The 2006~2009's total horizontal solar irradiance is greater than that of standard year, and the direct solar irradiance of standard year is bigger in winter and vice versa in summer. As results of simulation on heating and cooling loads, it is difficult to find out the bilateral influences between maximum thermal loads and annual's. The equivalent-time operating ratio(EOR) is defined on this study to estimate the differences between year and year, and the EOR of standard year shows low value comparing to 2006~2009 years'.

Heat Consumption Pattern Analysis by the Component Ratio of District Heating Users (지역난방 사용자 구성비에 따른 열소비 패턴 분석)

  • Lee, Hoon;Lee, Min-Kyun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.211-225
    • /
    • 2013
  • To run an optimal operation of Integrated energy supply facilities, we need to analyze heat consumption patterns of District heating users and derive optimum and maximum load ratio of heat production facilities unit. This study selects three District heat production facilities. It also classifies District heating users into residential apartment buildings and eight non-residential buildings and analyzes heat consumption results for an year. Finally it carries out the analysis of how the ratio change of each type affects maximum load ratio, facility utilization ratio, heat supply range. According to this study, three different District heat facilities of residential apartment building show similar daily and annual heat consumption patterns. Annual average load ratio, maximum load ratio and annual heat demand increase as outdoor temperatures decrease. Non-residential buildings in urban District focused on apartment buildings display similar by the daily and annual heat consumption patterns. Yet their daily and annual maximum load ratio differ according to outdoor temperature, District, building types and their composition ratio. In the case of urban District focused on apartment buildings reach optimum and maximum load ratio when apartment buildings reaches 60-70% of the total. At that point heat supply range becomes maximized and the most economic efficiency is obtained.