• Title/Summary/Keyword: 최대마찰력

Search Result 142, Processing Time 0.015 seconds

Brittle rock property and damage index assessment for predicting brittle failure in underground opening (지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가)

  • Lee, Kang-Hyun;Bang, Joon-Ho;Kim, Jin-Ha;Kim, Sang-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.327-351
    • /
    • 2009
  • Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.