• 제목/요약/키워드: 최근접 이웃 탐색

검색결과 19건 처리시간 0.043초

연속 최근접 이웃(CNN) 탐색의 성능향상을 위한 탐색구간 제한기법 (A Search Interval Limitation Technique for Improved Search Performance of CNN)

  • 한석;오덕신;김종완
    • 인터넷정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2008
  • 위치기반 서비스(LBS, Location Based Services)에 대한 관심이 증가함에 따라 사용자가 이동 중에도 질의를 통한 최근접 이웃(NN, Nearest Neighbor) 탐색에 대한 필요성이 증가하였다. 이와 같은 동적환경에서의 최근접 이웃 탐색은 탐색 구간에 대해 NN탐색기법을 반복 적용하여 수행해 왔으나 이는 불필요한 중복연산이 발생하여 탐색 비용이 증가하는 단점이 있다. 본 논문에서는 이동 중에도 탐색 구간에 대해 연속적인 최근접 이웃(CNN, Continuous Nearest Neighbor)을 탐색하는 새로운 기법인 Slabbed_CNN을 제안한다. Slabbed_CNN은 슬랩을 이용하여 탐색 구간을 줄임으로써 기존 CNN기법의 탐색영역과 계산비용을 감소시킴으로써 기존 CNN보다 연산비용을 감소시키고 빠른 서비스를 제공한다.

  • PDF

최근접 이웃 탐색 기반의 향상된 스카이라인 질의를 위한 전처리 기법 (Nearest Neighbor-based Pre-processing Scheme for Advanced Skyline Query)

  • 김지현;이상민;전형준;진창균;김지윤;권진영;김종완;오덕신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.420-423
    • /
    • 2020
  • 스카이라인 질의는 객체의 속성을 기준으로 사용자의 선호에 적합한 대상을 탐색하는 기법이다. 기존 스카이라인 질의는 일괄처리 방식으로 탐색 결과를 반환하지만 대화형 앱이나 모바일 환경과 같이 잦은 위치이동 발생 시 일괄처리 방식으로 스카이라인 질의 결과를 신속하게 받기 어렵다. 최근접 이웃(Nearest Neighbor) 알고리즘은 사용자와 상호 작용이 필요한 대화형 앱에서 실시간으로 선호 객체를 탐색하여 사용자에게 전달함으로써 객체의 반환 속도를 향상시켰다. 그러나 최근접 이웃 알고리즘은 객체 탐색 과정에서 반복적인 비교 연산을 수행하여 불필요한 탐색 시간이 소요된다. 본 논문은 대화형 앱에서 신속한 스카이라인 결과를 산출하고자 연산 대상 객체의 범위를 축소함으로써 최근접 이웃 스카이라인 질의 알고리즘의 성능을 향상시킨 전처리 기법을 제안한다. 데이터 객체는 최대 40,000 개의 실험에서 제안 기법은 최근접 이웃 알고리즘보다 50% 빠른 성능을 나타내어 본 연구의 가용성이 증명되었다.

슬랩을 이용한 효율적인 연속적 최근접 이운 탐색기법 (An Efficient Continuous Nearest Neighbor Search Scheme Using the Slab)

  • 한석;박광진;김종완;황종선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.226-228
    • /
    • 2004
  • 최근에 이동객체의 위치정보를 활용한 위치기반서비스(L8S, Location Based Services)에 대한 관심이 증가하고 있다. 전통적으로 정적인 위치정보를 갖는 공간 객체는 GIS(Geographic Information System) 서버에 저장, 관리되었다. 이동객체는 시간에 따라 위치의 변화가 매우 빈번하여 위치 정보가 계속 갱신되기 때문에, 전통적인 GIS 서버로는 관리가 어렵다. 본 논문에서는 기존의 연속적인 최근접 이웃탐색 기법에서 데이터의 처리 순서에 따라 탐색공간과 계산비용이 증가하는 문제점을 슬랩을 사용하여 해결한다. 최근접 이웃의 수직연장선 사이의 공간인 슬랩 내부영역에 대해서만 탐색하도록 하여 탐색영역을 줄이고, 그 내부에 있는 점들에 대해서만 처리하여 계산비용을 줄인다.

  • PDF

도로 네트워크에서 $A^*$ 알고리즘을 이용한 k-최근접 이웃 객체에 대한 효과적인 경로 탐색 방법 (Efficient Path Finding Based on the $A^*$ algorithm for Processing k-Nearest Neighbor Queries in Road Network Databases)

  • 신성현;이상철;김상욱;이정훈;임을규
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권5호
    • /
    • pp.405-410
    • /
    • 2009
  • 본 논문에서는 기존 k-최근접 객체 검색의 효율성을 개선하고 도로 네트워크에의 응용을 용이하게 하기 위하여 질의 점으로부터 k개의 정적 객체까지의 경로를 효과적으로 탐색할 수 있는 방법을 제안한다. 제안한 방법은 우선, k-최근접 이웃 질의 방법을 이용하여 후보 정적 객체들을 선정한 후 이들 후보 객체들의 위치 정보를 이용하여 최단 경로를 탐색한다. 일대다 경로탐색을 위하여 A* 알고리즘을 개선하여 반복된 일대일 경로탐색에 따르는 중복된 노드 스캔을 제거한다. 또, 계산된 결과를 이용하여 질의점으로부터 네트워크 거리상으로 가까운 k개의 정적 객체들의 위치를 재정렬하여 반환한다. 성능평가 실험 결과, 제안한 방법은 기존 방법들인 INE, post-Dijkstra, 그리고 $na{\ddot{i}}ve$ method에 비해 정확성이 100%로 매우 높게 나타났으며, 노드 탐색 시간은 $1.3{\sim}3.0$배로 향상된 성능을 보였다.

도로 네트워크에서 k-최근접 이웃 검색을 위한 최단 경로 탐색 (Shortest Path Finding for k-Nearest Neighbor Searching in Road Network Databases)

  • 신성현;이상철;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.336-339
    • /
    • 2009
  • 본 논문에서는 최단 경로 탐색 및 거리 계산의 필요성을 가지고 근사 인덱싱 방법의 후처리 부분을 제안한다. 근사 인덱싱 방법이란 오프라인에서 네트워크 공간상의 객체들을 유클리드 공간 상의 절대 좌표로 사상하여 인덱싱한 후, k-최근접 이웃 질의를 처리하는 방법이다. 그러나 기존 연구는 질의 점으로부터 각 정적 객체까지의 경로를 탐색해주지 않을 뿐만 아니라 착오 기각이 발생한다. 따라서 본 논문에서는 질의 점으로부터 k개의 정적 객체까지의 경로를 효과적으로 탐색할 수 있는 방법을 제안한다. 또한, 이 방법을 통하여 착오 기각 역시 완화시킬 수 있는 방법을 제안한다. 실험을 통하여 제안하는 방법이 기존 경로 탐색 기법들에 비해 노드 탐색 횟수 및 실행 성능이 크게 향상시킨 것으로 나타났다.

PCA 기반 군집화를 이용한 해슁 기법 (A Hashing Method Using PCA-based Clustering)

  • 박정희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권6호
    • /
    • pp.215-218
    • /
    • 2014
  • 해슁(hashing)을 기반으로 한 근사 최근접 이웃 탐색(approximate nearest neighbors search, ANN search) 방법에서는 데이터 샘플들을 k-비트 이진 코드로 변환하는 해쉬 함수들을 이용함으로써 근접 이웃 탐색이 이진변환 공간에서 이루어지게 된다. 본 논문에서는 PCA 기반 군집화 방법인 Principal Direction Divisive Partitioning(PDDP)를 이용한 해슁 방법을 제안한다. PDDP는 가장 큰 분산을 가지는 클러스터를 선택하여 그 클러스터의 첫 번째 주성분 방향을 이용하여 두 개의 클러스터로 분할하는 과정을 반복적으로 시행하는 군집화 방법이다. 제안하는 해슁 방법에서는 PDDP에서 분할을 위해 사용하는 주성분방향을 바이너리 코딩을 위한 사영벡터로서 사용한다. 실험결과는 제안하는 방법이 다른 해슁 방법들과 비교하여 경쟁력 있는 방법임을 입증한다.

바이토닉 정렬 기반의 GPU 해싱을 이용한 인접 입자의 빠른 접근 기법과 그 응용 사례 (Fast Access Method of Neighboring Particles Using Bitonic Sort Based GPU Hashing, and Its Applications)

  • 이수빈;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.357-360
    • /
    • 2022
  • 본 논문에서는 대용량 데이터에서 빠르게 주변 데이터를 접근하기 위한 자료구조인 최근접 이웃 탐색(Nearest neighbor search, NNS) 문제를 빠르게 풀 수 있는 바이토닉 정렬(Bitonic sort) 기반 해시 테이블을 GPU기반에서 설계하는 방법과 이를 통해 입자 기반 물리 시뮬레이션을 고속화할 수 있는 방법에 대해 살펴본다. 본 논문에서는 CUDA 아키텍처를 이용하여 해시 테이블을 설계하였으며, 계산양이 가장 큰 데이터 정렬부분을 최적화함으로써 NVIDIA에서 제공하는 CUDA 해시 테이블보다 빠른 결과를 얻을 수 있으며, 이 자료구조를 입자 기반 시뮬레이션에 통합함으로써 고성능 시뮬레이션을 쉽게 제작할 수 있다.

  • PDF

숨은 객체 식별을 위한 향상된 공간객체 탐색기법 (An Advanced Scheme for Searching Spatial Objects and Identifying Hidden Objects)

  • 김종완;조양현
    • 한국정보통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1518-1524
    • /
    • 2014
  • 본 논문은 주변탐색(Surrounder Search: SuSe)이라는 새로운 공간질의 방법을 제안한다. 이 기법은 현재 사용자의 위치를 중심으로 주변에서 가까운 관심영역의 공간객체를 탐색하는 것이다. 사용자 중심의 주변탐색은 증강현실과 같이 사용자가 관심 있어 하는 공간객체 중 가까운 것을 찾기 때문에 기존의 공간질의와 구별된다. 기존 기법은 질의점과 객체 사이의 최단거리(MINDIST)를 기준으로 주변을 탐색하지만 제안 기법에서는 객체들 사이에 숨어있지만 관심의 대상인 숨은 객체를 식별하기 위해서 각도(Angle)를 함께 고려하여 탐색한다. 제안 기법의 특징은 기존기법이 거리만을 사용하여 가까운 객체를 탐색한 것과 달리 거리는 멀지만 숨은 객체까지도 찾아냄으로써 사용자의 선호도를 더 세밀하게 반영한다. 실험결과에서 제안기법인 SuSe는 최근접 이웃 탐색기법인 NN(Nearest Neighbor)과 비교하여 보다 정밀한 공간객체 탐색이 가능하며 향상된 탐색성능을 타나낸다.

머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구 (Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning)

  • 이경건;하희수;홍훈기;김희백
    • 한국과학교육학회지
    • /
    • 제38권2호
    • /
    • pp.219-234
    • /
    • 2018
  • 본 연구에서는 국내 교육학 연구에서 거의 사용되지 않던 머신 러닝 기술을 과학 교육 연구에 접목하여, 학생들의 과학 논변 활동에서 나타나는 논변의 구성 요소를 분석하는 과정을 자동화할 수 있는 가능성을 탐색해보았다. 학습 데이터로는 Toulmin이 제안하였던 틀에 따라 학생들의 과학 논변 구성 요소를 코딩한 국내 선행 문헌 18건을 수합하고 정리하여 990개의 문장을 추출하였으며, 테스트 데이터로는 실제 교실 환경에서 발화된 과학 논변 전사 데이터를 사용하여 483개의 문장을 추출하고 연구자들이 사전 코딩을 수행하였다. Python의 'KoNLPy' 패키지와 '꼬꼬마(Kkma)' 모듈을 사용한 한국어 자연어 처리(Natural Language Processing, NLP)를 통해 개별 논변을 구성하는 단어와 형태소를 분석하였으며, 연구자 2인과 국어교육 석사학위 소지자 1인의 검토 과정을 거쳤다. 총 1,473개의 문장에 대한 논변-형태소:품사 행렬을 만든 후에 다섯 가지 방법으로 머신 러닝을 수행하고 생성된 예측 모델과 연구자의 사전 코딩을 비교한 결과, 개별 문장의 형태소만을 고려하였을 때에는 k-최근접 이웃 알고리즘(KNN)이 약 54%의 일치도(${\kappa}=0.22$)를 보임으로써 가장 우수하였다. 직전 문장이 어떻게 코딩되어 있는지에 관한 정보가 주어졌을 때, k-최근접 이웃 알고리즘(KNN)이 약 55%의 일치도(${\kappa}=0.24$)를 보였으며 다른 머신 러닝 기법에서도 전반적으로 일치도가 상승하였다. 더 나아가, 본 연구의 결과는 과학 논변 활동의 분석에서 개별문장을 고려하는 단순한 방법이 어느 정도 유용함과 동시에, 담화의 맥락을 고려하는 것 또한 필요함을 데이터에 기반하여 보여주었다. 또한 머신 러닝을 통해 교실에서 한국어로 이루어진 과학 논변 활동을 분석하여 연구자와 교사들에게 유용하게 사용될 수 있는 가능성을 보여준다.

영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구 (A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification)

  • 문수진;이의철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권10호
    • /
    • pp.63-70
    • /
    • 2018
  • 영상을 이용한 생체 신호 측정 기술이 발전하고 있으며, 특히 생명 유지를 위한 호흡 신호 측정기술 연구가 지속적으로 진행되고 있다. 기존 기술은 사람의 몸에서 방출하는 열을 측정하는 열화상 카메라를 통하여 호흡 신호를 측정하였다. 또한, 실시간으로 사람의 흉부 움직임을 분석하여 호흡률을 측정하는 연구도 진행되었다. 하지만, 적외선 열화상 영상을 이용하여 영상 처리를 하는 것은 외부 환경 요인으로 인해 호흡 기관의 탐색이 어려울 수 있으며, 이에 따라 호흡률 측정의 정확도가 떨어지는 문제들이 발생했다. 본 연구에서는 호흡 기관의 영역 탐색을 강화하기 위해 가시광 및 적외선 열화상 카메라를 이용하여 영상을 취득하였다. 그리고 두 영상을 기반으로 얼굴 인식, 영상 정합 등의 과정을 통해 호흡 기관 영역의 특징을 추출한다. 추출한 특징 값을 통계학적 분류 방법 중 하나인 k-최근접 이웃 분류기를 통해 호흡 신호의 패턴을 분류한다. 분류한 패턴의 특성에 따라 호흡률을 계산하며, 측정한 호흡률의 성능을 확인하기 위해 실제 호흡률과 비교 과정을 통해 분석함으로써, 호흡률 측정의 가능성을 확인하였다.